Skip to main content
Log in

Tuning oscillatory time-series evolution by Pt(111)-OHad stabilization

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Controlling the Pt(111)-OHad stability by means of noncovalent interactions with hydrated cations, it was possible to modify natural changes in the galvanostatic time-series collected during ethylene glycol electro-oxidation reaction. These modifications, also known as drift, include maximum potential in each oscillation cycle, oscillation patterns, and frequency changes. The phenomenon was investigated in a temperature range from 5 to 20 °C and allows us to infer about the sensitiveness of time-series in the presence of distinct alkaline cations. The stable OHad layer in the presence of Li+ induces lower drift in the time-series, resulting in a longer time-series with oscillatory behavior. On the other hand, once the OHad layer is less stable in the Na+ electrolyte, the formation of surface oxides from Pt-OH happens at lower potential than in the LiOH solution, resulting in fast changes of both the maximum potential and oscillation frequency and short time-series, i.e., the drift becoming higher. Finally, the conversion of Pt-OH onto Pt oxides is still easier in KOH solutions, producing short time-series and does not allow the oscillatory behavior.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mukouyama Y, Kawasaki H, Hara D, Yamada Y, Nakanishi S (2017) Electrochem Soc 164(2):H1–H10

    CAS  Google Scholar 

  2. Mukouyama Y, Nakanishi S, Nakato Y (1999) Bull Chem Soc Jpn 72:2573–2590

    CAS  Google Scholar 

  3. Silva KN, Nagao R, Sitta E (2017) ChemistrySelect 2:11713–11716

    Google Scholar 

  4. Varela H, Krischer K (2002) J Phys Chem B 106:12258–12266

    CAS  Google Scholar 

  5. Strasser P, Lubke M, Raspel F, Eiswirth M, Ertl G (1997) J Chem Phys 107:979–990

    CAS  Google Scholar 

  6. Cabral MF, Nagao R, Sitta E, Varela H (2013) Phys Chem Chem Phys 15:1437–1442

    CAS  PubMed  Google Scholar 

  7. Nagao R, Cantane DA, Lima FHB, Varela H (2012) Phys Chem Chem Phys 14:8294–8298

    CAS  PubMed  Google Scholar 

  8. Nagao R, Cantane DA, Lima FHB, Varela H (2013) J Phys Chem C 117(29):15098–15105

    CAS  Google Scholar 

  9. Boscheto E, Batista BC, Lima RB, Varela H (2010) J Electroanal Chem 642:17–21

    CAS  Google Scholar 

  10. Martins AL, Batista BC, Sitta E, Varela H (2008) J Braz Chem Soc 19:679–687

    CAS  Google Scholar 

  11. Melle GB, Hartl FW, Varela H, Sitta E (2018) J Electroanal Chem 826:164–169

    CAS  Google Scholar 

  12. Silva KN, Maruyama ST, Sitta E (2017) J Braz Chem Soc 28(9):1725–1731

    Google Scholar 

  13. Salum LF, Gonzalez ER, Feliu JM (2016) Electrochem Commun 72:83–86

    Google Scholar 

  14. Sitta E, Nagao R, Kiss IZ, Varela H (2015) J Phys Chem C 119(3):1464–1472

    CAS  Google Scholar 

  15. Sitta E, Varela H (2010) Electrocatal 1:19–21

    CAS  Google Scholar 

  16. Sitta E, Nascimento MA, Varela H (2010) Phys Chem Chem Phys 12:15195–15206

    CAS  PubMed  Google Scholar 

  17. Oliveira CP, Lussari NV, Sitta E, Varela H (2012) Electrochim Acta 85:674–679

    CAS  Google Scholar 

  18. Melle GB, Machado EG, Mascaro LH, Sitta E (2019) Electrochim Acta 296:972–979

    CAS  Google Scholar 

  19. Strasser P, Eiswirth M, Koper MTM (1999) J Electroanal Chem 478:50–66

    CAS  Google Scholar 

  20. Krischer K, Varela H (2003) In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells: fundamentals, technology and applications, vol. 2. Chichester, Wiley

    Google Scholar 

  21. Nagao R, Sitta E, Varela H (2010) J Phys Chem C 114:22262–22268

    CAS  Google Scholar 

  22. Zülke AA, Varela H (2016) Sci Rep 6:24553

    PubMed  PubMed Central  Google Scholar 

  23. Perini N, Batista BC, Angelo ACD, Epstein IR, Varela H (2014) ChemPhysChem 15:1753–1760

    CAS  PubMed  Google Scholar 

  24. Melke AN, Nagao R, Eiswirth M, Varela H (2014) J Chem Phys 141:234701

    Google Scholar 

  25. Angestein-Kozlowska H, Conway BE, Sharp WBA (1973) J Electroanal Chem 43:9–36

    Google Scholar 

  26. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Electrochim Acta 49:1451–1459

    CAS  Google Scholar 

  27. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2009) Langmuir 25:1897–1900

    CAS  PubMed  Google Scholar 

  28. Aaronson BDB, Chen C-H, Li H, Koper MTM, Lai SCS, Unwin PR (2013) J Am Chem Soc 135:3873–3880

    CAS  PubMed  Google Scholar 

  29. Strmcnik D, Kodama K, van der Vliet D, Greeley J, Stamenkovic VR, Markovic NM (2009) Nat Chem 1(6):466–472

    CAS  PubMed  Google Scholar 

  30. Clavilier J, Armand D, Sun S, Petit M (1986) J Electroanal Chem 205:267–277

    CAS  Google Scholar 

  31. Korzeniewsky C, Climent V, Feliu JM (2012) In: Bard AJ, Zoski CG (eds) Electroanalytical chemistry: a series of advances, vol. 24. Boca Raton, CRC Press

    Google Scholar 

  32. Markovic NM, Ross PN (2002) Surf Sci Rep 45:117–229

    CAS  Google Scholar 

  33. Gomez-Marin AM, Rizo R, Feliu JM (2014) Catal Sci Technol 4:1685–1698

    CAS  Google Scholar 

  34. Björling A, Feliu JM (2011) J Electroanal Chem 662:17–24

    Google Scholar 

  35. Bondarenko AS, Stephens IEL, Hansen HA, Pérez-Alonso FJ, Tripkovic V, Johansson TP, Rossmeisl J, Nørskov JK, Chorkendorff I (2011) Langmuir 27:2058–2066

    CAS  PubMed  Google Scholar 

  36. Huang Y-F, Kooyman PJ, Koper MTM (2016) Nat Commun 7:12440

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang SC, Ho Y, Weaver MJ (1991) J Am Chem Soc 113:9506–9513

    CAS  Google Scholar 

  38. Markovic NM, Avramov-Ivic ML, Marinkovic NS, Adzic RR (1991) J Electroanal Chem 312:115–130

    CAS  Google Scholar 

  39. Sun S, Chen A (1994) Electrochim Acta 39:969–973

    CAS  Google Scholar 

  40. Sitta E, Batista BC, Varela H (2011) ChemComm 11:3775

    Google Scholar 

  41. Nagao R, Epstein IR, Gonzalez ER, Varela H (2008) J Phys Chem A 112:4617–4624

    CAS  PubMed  Google Scholar 

  42. Stoffelsma C, Rodriguez P, Garcia G, Garcia-Araez N, Strmcnik D, Marković NM, Koper MTM (2010) J Am Chem Soc 132:16127–16133

    CAS  PubMed  Google Scholar 

  43. Nakamura M, Nakajima Y, Kato K, Sakata O, Hoshi N (2015) J Phys Chem C 119:23586–23591

    CAS  Google Scholar 

  44. Machado EG, Varela H (2018) Kinetic instabilities in electrocatalysis In:Wandelt K (ed.) Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry 5:701–718

  45. Schmidt TJ, Ross PN, Markovic NM (2001) J Phys Chem B 105:12082–12086

    CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly thank Prof. JM Feliu for providing the single crystals employed in this work.

Funding

The São Paulo Research Foundation (FAPESP) (no. 2013/07296-2) has provided financial support and scholarship (no. 2016/14758-0) for this study. KNS received scholarship from the Brazilian Council for Scientific and Technological Development (CNPq) (no. 141097/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elton Sitta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, K.N., Sitta, E. Tuning oscillatory time-series evolution by Pt(111)-OHad stabilization. J Solid State Electrochem 24, 1921–1926 (2020). https://doi.org/10.1007/s10008-020-04557-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04557-7

Keywords

Navigation