Skip to main content
Log in

Preparation of Titanium-silphenylene-siloxane Hybrid Polymers with High Refractive Index, Transmittance, and Thermal Stability

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Vinyl-containing titanium-silphenylene-siloxane oligomers (O1, O2, O3, and O4) with different molar ratios of titanium to silicon were successfully synthesized in high yields by nonhydrolytic sol-gel reaction, and the obtained four oligomers were further crosslinked with methylphenyl hydro-silicone oil (4) to form corresponding polymers (P1, P2, P3, and P4) by hydrosilylation reaction. Their structures were characterized with spectroscopic characterization techniques including FTIR, 1H-NMR, and Raman spectroscopy. The effect of titanium element on crosslinking behavior, thermal resistance, refractive index, transparency, thermal aging stability, glass transition temperature, and surface properties of the polymers were studied. Compared with titanium-free polymer P1, the thermal resistance, refractive index, and thermal aging stability of titanium-silphenylene-siloxane polymers (P2, P3, and P4) were significantly improved. The titanium-silphenylene-siloxane polymers achieved a high refractive index (n = 1.580–1.584) and thermostability (T5d > 500 °C). In thermal aging, the polymers exhibited superior performances with high optical transparency (~90% at 450 nm) and exhibited high thermal stability (~84% at 450 nm after thermal aging at 150 °C for 120 h). These data indicate that the polymers have potential application in optical materials such as LED encapsulants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rea, M. S. Human health and well-being: promises for a bright future from solid-state lighting. Proc. SPIE2011, 7954, 1–12.

    Google Scholar 

  2. Heremans, P. L.; Vanlathem, E.; Muccini, M.; Norris, A. W.; Bahadur, M.; Meulenkamp, E. A.; DeGroot, J.; Yoshitake, M. Novel silicone materials for LED packaging and opto-electronics devices. Proc. SPIE2006, 6192, 1–8.

    Google Scholar 

  3. Chung, P. T.; Chiou, S. H.; Tseng, C. Y.; Chiang, A. S. Preparation and evaluation of a zirconia/oligosiloxane nanocomposite for LED encapsulation. ACS Appl. Mater. Interfaces2016, 8, 9986–9993.

    CAS  PubMed  Google Scholar 

  4. Tsai, C. L.; Liou, G. S. Highly transparent and flexible polyimide/ZrO2 nanocomposite optical films with a tunable refractive index and Abbe number. Chem. Commun.2015, 51, 13523–13526.

    CAS  Google Scholar 

  5. Tao, P.; Li, Y.; Siegel, R. W.; Schadler, L. S. Transparent dispensible high-refractive index ZrO2/epoxy nanocomposites for LED encapsulation. J. Appl. Polym. Sci.2013, 130, 3785–3793.

    CAS  Google Scholar 

  6. Chung, P. T.; Yang, C. T.; Wang, S. H.; Chen, C. W.; Chiang, A. S. T.; Liu, C. Y. ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys.2012, 136, 868–876.

    CAS  Google Scholar 

  7. Ireni, N. G.; Karuppaiah, M.; Narayan, R.; Raju, K. V. S. N.; Basak, P. TiO2/poly(thiourethane-urethane)-urea nanocomposites: anti-corrosion materials with NIR-reflectivity and high refractive index. Polymer2017, 119, 142–151.

    CAS  Google Scholar 

  8. Tao, P.; Li, Y.; Rungta, A.; Viswanath, A.; Gao, J.; Benicewicz, B. C.; Siegel, R. W.; Schadler, L. S. TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem.2011, 21, 18623–18629.

    CAS  Google Scholar 

  9. Su, H. W.; Chen, W. C. High refractive index polyimide-nanocrystalline-titania hybrid optical materials. J. Mater. Chem.2008, 18, 1139–1145.

    CAS  Google Scholar 

  10. Liou, G. S.; Lin, P. H.; Yen, H. J.; Yu, Y. Y.; Tsai, T. W.; Chen, W. C. Highly flexible and optical transparent 6F-PI/TiO2 optical hybrid films with tunable refractive index and excellent thermal stability. J. Mater. Chem.2010, 20, 531–536.

    CAS  Google Scholar 

  11. Mont, F. W.; Kim, J. K.; Schubert, M. F.; Luo, H.; Schubert, E. F.; Siegel, R. W. High refractive index nanoparticle-loaded encapsulants for light-emitting diodes. J. Appl. Phys.2008, 103, 1–6.

    Google Scholar 

  12. Cai, B.; Kaino, T.; Sugihara, O. Sulfonyl-containing polymer and its alumina nanocomposite with high Abbe number and high refractive index. Opt. Mater. Express2015, 5, 1210–1216.

    Google Scholar 

  13. Xu, J.; Zhang, Y.; Zhu, W.; Cui, Y. Synthesis of polymeric nanocomposite hydrogels containing the pendant ZnS nanoparticles: approach to higher refractive index optical polymeric nanocomposites. Macromolecules2018, 51, 2672–2681.

    CAS  Google Scholar 

  14. Shadfan, A.; Pawlowski, M.; Wang, Y.; Subramanian, K.; Gabay, I.; Ben-Yakar, A.; Tkaczyk, T. Design and fabrication of a miniature objective consisting of high refractive index zinc sulfide lenses for laser surgery. Opt. Eng.2016, 55, 1–8.

    Google Scholar 

  15. Loste, J.; Lopez-Cuesta, J. M.; Billon, L.; Garay, H.; Save, M. Transparent polymer nanocomposites: an overview on their synthesis and advanced properties. Prog. Polym. Sci.2019, 89, 133–158.

    CAS  Google Scholar 

  16. Zhou, Y.; Tran, N.; Lin, Y. C.; He, Y. Z.; Shi, F. G. One-component, low-temperature, and fast cure epoxy encapsulant with high refractive index for LED applications. IEEE Trans. Adv. Packag.2008, 31, 484–489.

    CAS  Google Scholar 

  17. Kim, J.-S.; Yang, S. C.; Kwak, S. Y.; Choi, Y.; Paik, K. W.; Bae, B. S. High performance encapsulant for light-emitting diodes (LEDs) by a sol-gel derived hydrogen siloxane hybrid. J. Mater. Chem.2012, 22, 7954–7960.

    CAS  Google Scholar 

  18. Zhan, X.; Xing, Q.; Liu, H.; Zhang, J.; Cheng, J.; Lin, X. A facile method for fabrication of titanium-doped hybrid materials with high refractive index. RSC Adv.2014, 4, 13909–13918.

    CAS  Google Scholar 

  19. Reddy, P. M.; Chang, C. J.; Lai, C. F.; Su, M. J.; Tsai, M. H. Improved organic-inorganic/graphene hybrid composite as encapsulant for white LEDs: role of graphene, titanium(IV) isopropoxide and diphenylsilanediol. Compos. Sci. Technol.2018, 165, 95–105.

    CAS  Google Scholar 

  20. Kim, Y. H.; Bae, J. Y.; Jin, J.; Bae, B. S. Sol-gel derived transparent zirconium-phenyl siloxane hybrid for robust high refractive index LED encapsulant. ACS Appl. Mater. Interfaces2014, 6, 3115–3121.

    CAS  PubMed  Google Scholar 

  21. Nakagawa, Y.; Suzuki, Y.; Higashihara, T.; Ando, S.; Ueda, M. Synthesis of highly refractive poly(phenylene thioether)s containing a binaphthyl or diphenylfluorene unit. Polym. Chem.2012, 3, 2531–2536.

    CAS  Google Scholar 

  22. Suzuki, Y.; Murakami, K.; Ando, S.; Higashihara, T.; Ueda, M. Synthesis and characterization of thianthrene-based poly(phenylene sulfide)s with high refractive index over 1.8. J. Mater. Chem.2011, 21, 15727–15731.

    CAS  Google Scholar 

  23. McGrath, J. E.; Rasmussen, L.; Shultz, A. R.; Shobha, H. K.; Sankarapandian, M.; Glass, T.; Long, T. E.; Pasquale, A. J. Novel carbazole phenoxy-based methacrylates to produce high-refractive index polymers. Polymer2006, 47, 4042–4057.

  24. Sun, J.; Cheng, J. G.; Zhu, W. Q.; Ren, S. J.; Zhong, H. L.; Zeng, D. L.; Du, J. P.; Xu, E. J.; Liu, Y. C.; Fang, Q. An X-shaped τ-conjugated polymer comprising of fluorene units and anthracene units with high efficiency. Synthesis and optical and electrochemical properties. J. Polym. Sci., Part A: Polym. Chem.2008, 46, 5616–5625.

    CAS  Google Scholar 

  25. Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H. M. Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct.2010, 976, 274–281.

    CAS  Google Scholar 

  26. Kawakita, T.; Oh, H. S.; Moon, J. Y.; Liu, Y.; Imae, I.; Kawakami, Y. Synthesis, characterization and thermal properties of phenylene-disiloxane polymers obtained from catalytic cross-dehydrocoupling polymerization of bis(dimethylsilyl)benzene isomers and water. Polym. Int.2001, 50, 1346–1351.

    CAS  Google Scholar 

  27. Yang, Z.; Han, S.; Zhang, R.; Feng, S.; Zhang, C.; Zhang, S. Effects of silphenylene units on the thermal stability of silicone resins. Polym. Degrad. Stab.2011, 96, 2145–2151.

    CAS  Google Scholar 

  28. Cao, X. Y.; Wang, L. L.; Li, B.; Zhang, R. B. Synthesis and characterization of ladder-like phenylene-bridged polysiloxanes. Polym. Adv. Technol.2015, 8, 657–661.

    Google Scholar 

  29. Ren, J.; Li, Z.; Liu, S.; Xing, Y.; Xie, K. Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties. Catal. Lett.2008, 124, 185–194.

    CAS  Google Scholar 

  30. Chen, X.; Fang, L.; Wang, J.; He, F.; Chen, X.; Wang, Y.; Zhou, J.; Tao, Y.; Sun, J.; Fang, Q. Intrinsic high refractive index siloxane-sulfide polymer networks having high thermostability and transmittance via thiol-ene cross-linking reaction. Macromolecules2018, 51, 7567–7573.

    CAS  Google Scholar 

  31. Nakajima, Y.; Shimada, S. Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Adv.2015, 5, 20603–20616.

    CAS  Google Scholar 

  32. Speier, J. L.; Webster, J. A.; Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc.1957, 79, 974–979.

    CAS  Google Scholar 

  33. Karstedt, B. D.; Scotia, N. Y. 1973, U.S. Pat., 3, 775, 452.

  34. Du, X.; Zhang, Y.; Peng, D.; Huang, Z. Base-metal-catalyzed regiodivergent alkene hydrosilylations. Angew. Chem. Int. Ed.2016, 55, 6671–6675.

    CAS  Google Scholar 

  35. Sunada, Y.; Noda, D.; Soejima, H.; Tsutsumi, H.; Nagashima, H. Combinatorial approach to the catalytic hydrosilylation of styrene derivatives: catalyst systems composed of organoiron(0) or (II) precursors and isocyanides. Organometallics2015, 34, 2896–2906.

    CAS  Google Scholar 

  36. Mo, Z.; Liu, Y.; Deng, L. Anchoring of silyl donors on a N-heterocyclic carbene through the cobalt-mediated silylation of benzylic C-H bonds. Angew. Chem. Int. Ed. 2013, 52, 10845–10849.

    CAS  Google Scholar 

  37. Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. Rapid, regioconvergent, solvent-free alkene hydrosilylation with a cobalt catalyst. J. Am. Chem. Soc.2015, 137, 13244–13247.

    CAS  PubMed  Google Scholar 

  38. Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. A highly chemoselective cobalt catalyst for the hydrosilylation of alkenes using tertiary silanes and hydrosiloxanes. ACS Catal.2016, 6, 3589–3593.

    CAS  Google Scholar 

  39. Srinivas, V.; Nakajima, Y.; Ando, W.; Sato, K.; Shimada, S. Bis(acetylacetonato)Ni(II)/NaBHEt3-catalyzed hydrosilylation of 1,3-dienes, alkenes and alkynes. J. Oranomet. Chem.2016, 809, 57–62.

    CAS  Google Scholar 

  40. Srinivas, V.; Nakajima, Y.; Ando, W.; Sato, K.; Shimada, S. (Salicylaldiminato)Ni(II)-catalysts for hydrosilylation of olefins. Catal. Sci. Technol.2015, 5, 2081–2084.

    CAS  Google Scholar 

  41. Basso, N. R. D. S.; Greco, P. P.; Carone, C. L. P.; Livotto, P. R.; Simplício, L. M. T.; Rocha, Z. N. D.; Galland, G. B.; Santos, J. H. Z. D. Reactivity of zirconium and titanium alkoxides bidentade complexes on ethylene polymerization. J. Mol. Catal. A Chem.2007, 267, 129–136.

    CAS  Google Scholar 

  42. Yang, Z.; Feng, L.; Diao, S.; Feng, S.; Zhang, C. Study on the synthesis and thermal degradation of silicone resin containing silphenylene units. Thermochim. Acta2011, 521, 170–175.

    CAS  Google Scholar 

  43. Andrianov, K. A. Metalorganic polymers, ed. by Bradley, D. C., a division of John Wiley & Sons, London, 1963, p. 304

  44. Jovanovic, J. D.; Govedarica, M. N.; Dvornic, P. R.; Popovic, I. G. The thermogravimetric analysis of some polysiloxanes. Polym. Degrad. Stab.1998, 61, 87–93.

    CAS  Google Scholar 

  45. Higashihara, T.; Ueda, M. Recent progress in high refractive index polymers. Macromolecules2015, 48, 1915–1929.

    CAS  Google Scholar 

  46. Lorentz, H. A. Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der körperdichte. Ann. Phys.-Berlin1880, 245, 641–665.

  47. Lorenz, L. V. Ueber die refractionsconstante. Ann. Phys.-Berlin2006, 247, 70–103.

    Google Scholar 

  48. Macdonald, E. K.; Shaver, M. P. Intrinsic high refractive index polymers. Polym. Int.2015, 64, 6–14.

    CAS  Google Scholar 

  49. Fang, L. X.; Sun, J.; Chen, X. Y.; Tao Y. Q.; Zhou, J. F.; Wang, C. Y.; Fang, Q. Phosphorus- and sulfur-containing high-refractive-index polymers with high Tg and transparency derived from a bio-based aldehyde. Macromolecules2020, 53, 125–131.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Key R&D Program of China (No. 2016YFB0302105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-A Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Shan, SX., Zhang, M. et al. Preparation of Titanium-silphenylene-siloxane Hybrid Polymers with High Refractive Index, Transmittance, and Thermal Stability. Chin J Polym Sci 38, 973–982 (2020). https://doi.org/10.1007/s10118-020-2398-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2398-6

Keywords

Navigation