Skip to main content

Advertisement

Log in

Effect of 4-phenylbutyrate and valproate on dominant mutations of WFS1 gene in Wolfram syndrome

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Wolfram syndrome (WS) is a rare disorder caused by mutations in WFS1 that is characterized by diabetes mellitus, optic atrophy, sensorineural deafness, diabetes insipidus, and neurodegeneration. This disease is usually inherited as an autosomal recessive trait, but an autosomal dominant form has been reported. WFS1 encodes a transmembrane protein, which is a maintenance component of endoplasmic homeostasis. These dominant mutations were thought to increase endoplasmic reticulum (ER) stress. Recent studies suggest that 4-phenylbutyrate (PBA) and valproate (VPA) reduce ER stress. The objective of this study was to analyze the effect of PBA and VPA on dominant WFS1 mutants in vitro.

Methods

We determined whether dominant WFS1 mutants (p.His313Tyr, p.Trp314Arg, p.Asp325_Ile328del, p.Glu809Lys, and p.Glu864Lys) have the dominant negative effect using a luciferase assay of ER stress response element marker as ER stress. Moreover, the rescue of cell apoptosis induced by dominant WFS1 mutants following treatment with PBA or VPA was determined by quantitative real-time PCR of C/EBP homologous protein (CHOP) mRNA expression.

Results

These mutants showed the dominant negative effect on the wild-type WFS1. In addition, the levels of ER stress and CHOP mRNA were significantly elevated by all dominant WFS1 mutants. After treatment with PBA or VPA, ER stress and cell apoptosis were reduced in each mutant.

Conclusions

PBA and VPA could reduce the ER stress and cell apoptosis caused by dominant WFS1 mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hofmann S, Philbrook C, Gerbitz KD, Bauer MF (2003) Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum Mol Genet 12:2003–2012. https://doi.org/10.1093/hmg/ddg214

    Article  CAS  PubMed  Google Scholar 

  2. Morikawa S, Tajima T, Nakamura A, Ishizu K, Ariga T (2017) A novel heterozygous mutation of the WFS1 gene leading to constitutive endoplasmic reticulum stress is the cause of Wolfram syndrome. Pediatr Diabetes 18:934–941. https://doi.org/10.1111/pedi.12513

    Article  CAS  PubMed  Google Scholar 

  3. Rigoli L, Lombardo F, Di Bella C (2001) Wolfram syndrome and WFS1 gene. Clin Genet 79:103–117. https://doi.org/10.1111/j.1399-0004.2010.01522.x

    Article  CAS  Google Scholar 

  4. Matsunaga K, Tanabe K, Inoue H et al (2014) Wolfram syndrome in the Japanese population; molecular analysis of WFS1 gene and characterization of clinical features. PLoS ONE 9:e106906. https://doi.org/10.1371/journal.pone.0106906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Urano F (2016) Wolfram syndrome: diagnosis, management, and treatment. Curr Diab Rep 16:6. https://doi.org/10.1007/s11892-015-0702-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonnycastle LL, Chines PS, Hara T et al (2013) Autosomal dominant diabetes arising from a Wolfram syndrome 1 mutation. Diabetes 62:3943–3950. https://doi.org/10.2337/db13-0571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Franco E, Flanagan SE, Yagi T et al (2017) Dominant ER Stress-Inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes 66:2044–2053. https://doi.org/10.2337/db16-1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eiberg H, Hansen L, Kjer B et al (2006) Autosomal dominant optic atrophy associated with hearing impairment and impaired glucose regulation caused by a missense mutation in the WFS1 gene. J Med Genet 43:435–440. https://doi.org/10.1136/jmg.2005.034892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hansen L, Eiberg H, Barrett T, Bek T, Kjærsgaard P, Tranebjærg L, Rosenberg T (2005) Mutation analysis of the WFS1 gene in seven danish Wolfram syndrome families; four new mutations identified. Eur J Hum Genet 13:1275–1284. https://doi.org/10.1038/sj.ejhg.5201491

    Article  CAS  PubMed  Google Scholar 

  10. Cryns K, Thys S, Van Laer L et al (2003) The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochem Cell Biol 119:247–256

    Article  CAS  Google Scholar 

  11. Fukuoka H, Kanda Y, Ohta S, Usami S (2017) Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese. J Hum Genet 52:510–515. https://doi.org/10.1007/s10038-007-0144-3

    Article  Google Scholar 

  12. Pallotta MT, Tascini G, Crispoldi R, Orabona C, Mondanelli G, Grohmann U, Esposito S (2019) Wolfram syndrome, a rare neurodegenerative disease: from pathogenesis to future treatment perspectives. J Transl Med 17:238. https://doi.org/10.1186/s12967-019-1993-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fonseca SG, Burcin M, Gromada J, Urano F (2009) Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol 9:763–770. https://doi.org/10.1016/j.coph.2009.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fonseca SG, Fukuma M, Lipson KL, Nguyen LX, Allen JR, Oka Y, Urano F (2005) WFS1 is a novel component of the unfolded protein response and maintains homeostasis of the endoplasmic reticulum in pancreatic β-cells. J Biol Chem 280:39609–39615. https://doi.org/10.1074/jbc.M507426200

    Article  CAS  PubMed  Google Scholar 

  15. Kolb PS, Ayaub EA, Zhou W, Yum V, Dickhout JG, Ask K (2015) The therapeutic effects of 4-phenylbutyric acid in maintaining proteostasis. Int J Bio Cell Biol 61:45–52. https://doi.org/10.1016/j.biocel.2015.01.015

    Article  CAS  Google Scholar 

  16. Yam GH, Gaplovska-Kysela K, Zuber C, Roth J (2007) Sodium 4-phenylbutyrate acts as a chemical chaperone on misfolded myocilin to rescue cells from endoplasmic reticulum stress and apoptosis. Invest Opthtalmo Vis Sci 48:1683–1690. https://doi.org/10.1167/iovs.06-0943

    Article  Google Scholar 

  17. Zeitlin PL, Diener-West M, Rubenstein RC, Boyle MP, Lee CKK, Brass-Ernst L (2002) Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate. Mol Ther 6:119–126. https://doi.org/10.1006/mthe.2002.0639

    Article  CAS  PubMed  Google Scholar 

  18. Huang A, Young TL, Dang VT, Shi Y, McAlpine CS, Werstuck GH (2017) 4-phenylbutyrate and valproate treatment attenuates the progression of atherosclerosis and stabilizes existing plaques. Atherosclerosis 266:103–112. https://doi.org/10.1016/j.atherosclerosis.2017.09.034

    Article  CAS  PubMed  Google Scholar 

  19. Kim DS, Li B, Rhew KY et al (2012) The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts. Arch Pharmacal Res 35:1269–1278. https://doi.org/10.1007/s12272-012-0718-2

    Article  CAS  Google Scholar 

  20. Shang L, Hua H, Foo K et al (2014) β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63:923–933. https://doi.org/10.2337/db13-0717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cadavez L, Montane J, Alcarraz-Vizán G, Visa M, Vidal-Fàbrega L, Servitja J-M, Novials A (2014) Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression. PLoS ONE 9:e101797. https://doi.org/10.1371/journal.pone.0101797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kakiuchi C, Ishigaki S, Oslowski CM, Fonseca SG, Kato T, Urano F (2009) Valproate, a mood stabilizer, induces WFS1 expression and modulates its interaction with ER stress protein GRP94. PLoS ONE 4:e4134. https://doi.org/10.1371/journal.pone.0004134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim AJ, Shi Y, Austin RC, Werstuck GH (2005) Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci 118:89–99. https://doi.org/10.1242/jcs.01562

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Wu F, Zhang X (2017) Valproate attenuates endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells via the AKT/GSK3β signaling pathway. Int J Mol Sci 18:315. https://doi.org/10.3390/ijms18020315

    Article  CAS  PubMed Central  Google Scholar 

  25. Huang S, Zhu M, Wu W et al (2014) Valproate pretreatment protects pancreatic β-cells from palmitate-induced ER stress and apoptosis by inhibiting glycogen synthase kinase-3β. J Biomed Sci 21:38. https://doi.org/10.1186/1423-0127-21-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Terasmaa A, Soomets U, Oflijan J (2011) Wfs1 mutation makes mice sensitive to insulin-like effect of acute valproic acid and resistant to streptozocin. J Physiol Biochem 67:381–390. https://doi.org/10.1007/s13105-011-0088-0

    Article  CAS  PubMed  Google Scholar 

  27. Fonseca SG, Ishigaki S, Oslowski CM et al (2010) Wolfram syndrome 1 gene negatively regulates ER stress signaling in rodent and human cells. J Clin Inverst 120:744–755. https://doi.org/10.1172/JCI39678

    Article  CAS  Google Scholar 

  28. Wu J, Rutkowski DT, Dubois M et al (2007) ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13:351–364. https://doi.org/10.1016/j.devcel.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  29. Nishitoh H (2011) CHOP is a multifunctional transcription factor in the ER stress response. J Biochem 151:217–219. https://doi.org/10.1093/jb/mvr143

    Article  CAS  PubMed  Google Scholar 

  30. Ueda K, Kawano J, Takeda K et al (2005) Endoplasmic reticulum stress induces Wfs1 gene expression in pancreatic β-cells via transcriptional activation. Eur J Endocrinol 153:167–176. https://doi.org/10.1530/eje.1.01945

    Article  CAS  PubMed  Google Scholar 

  31. Yamada T, Ishihara H, Tamura A et al (2006) WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic β-cells. Hum Mol Genet 15:1600–1609. https://doi.org/10.1093/hmg/ddl081

    Article  CAS  PubMed  Google Scholar 

  32. Hara T, Mahadevan J, Kanekura K et al (2014) Calcium efflux from the endoplasmic reticulum leads to β-cell death. Endocrinology 155:758–768. https://doi.org/10.1210/en.2013-1519

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. F. Urano (Washington University School of Medicine) for the kind gift of the ERSE luciferase plasmid and WFS1 FLAG expression plasmid, and Dr. K.Tanabe (Yamaguchi University, Japan) for the kind gift of the WFS1 expression plasmid, Dr. S. Oyadomari (Tokushima University, Japan) for the kind gift of the ATF6α expression vector and Dr.N. Kotani, Dr J. Nakae (Keio University, Japan) and Dr. T. Kitamura (Gunma University, Japan) for the kind gift of the MIN6 cell line.

Funding

None declared.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Khishigjargal Batjargal, Toshihiro Tajima and Eriko Jimbo. The first draft of the manuscript was written by Khishigjargal Batjargal. Toshihiro Tajima and Eriko Jimbo commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. Batjargal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies involving human participants performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1964 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batjargal, K., Tajima, T., Jimbo, E.F. et al. Effect of 4-phenylbutyrate and valproate on dominant mutations of WFS1 gene in Wolfram syndrome. J Endocrinol Invest 43, 1317–1325 (2020). https://doi.org/10.1007/s40618-020-01228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01228-2

Keywords

Navigation