Skip to main content
Log in

Effects of oral contraceptives on thyroid function and vice versa

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Thyroid gland dysfunction represents an epidemiologically relevant disease in the female gender, where treatment with oral contraceptives (OCs) is frequently prescribed. Although OCs are able to impact the thyroid gland function, scanty data have been released on this matter so far.

Aim

The aim of this article was to review how hormonal OCs, including estrogen- or progesterone-only containing medications, interact with the hepatic production of thyroid-binding globulin (TBG) and, consequently, their effects on serum levels of thyroxine (T4) and triiodothyronine (T3). We also reviewed the effect of Levo-T4 (LT4) administration in women taking OCs and how they influence the thyroid function in both euthyroid women and in those receiving LT4.

Review

The estrogenic component of the pills is capable of increasing various liver proteins, such as TBG, sex hormone-binding protein (SHBG) and coagulation factors. On the other hand, the role of progestogens is to modulate estrogen-dependent effects mainly through their anti-androgenic action. In fact, a reduction in the effects of androgens is useful to keep the thromboembolic and cardiovascular risks low, whereas OCs increase it especially in women with subclinical hypothyroidism or in those treated with LT4. Accordingly, subclinical hypothyroidism is known to be associated with a higher mean platelet volume than normal and this increases cardiovascular risk due to platelet hyperactivity caused by incomplete thrombocytopoietic maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APC:

Active protein c

CVD:

Cardiovascular disease

OC:

Oral contraceptive

DNG:

Dienogest

EE:

Ethinyl estradiol

EV:

Estradiol valerate

FT4:

Free thyroxine

FT3:

Free triiodothyronine

LNG:

Levonorgestrel

LT4:

Levothyroxine

MI:

Myocardial infarction

MPV:

Mean platelet volume

PDW:

Amplitude of platelet distribution

PLT:

Platelet count

T3:

Triiodothyronine

T4:

Thyroxine

TSH:

Thyroid-stimulating hormone

TRH:

Thyrotropin-releasing hormone

TBG:

Thyroxine-binding globulin

TG:

Triglycerides

TTR:

Transthyretin

SCH:

Subclinical hypothyroidism

VTE:

Venous thromboembolism

References

  1. Tarim O et al (2007) Abnormal endocrine test results due to nonendocrine condirtions. In: Lifshitz F (ed) Pediatric endocrinology. Informa Health Care, London, pp 581–595

    Google Scholar 

  2. Liu Z, Long W, Fryburg DA, Barrett EJ (2006) The regulation of body and skeletal muscle protein metabolism by hormones and amino acids. J Nutr 136:212–217. https://doi.org/10.1093/jn/136.1.212S

    Article  Google Scholar 

  3. Dickhoff WW, Brown CL, Sullivan CV, Bern HA (1990) Fish and amphibian models for developmental endocrinology. J Exp Zool Suppl 4:90–97

    Google Scholar 

  4. Kikuyama S, Kawamura K, Tamaka S, Yamamoto K (1993) Aspects of amphibian morphogenesis: hormonal control. Int Rev Cytol 145:105–148. https://doi.org/10.1016/s0074-7696(08)60426-x

    Article  CAS  PubMed  Google Scholar 

  5. Williams GR (2000) Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 20:8329–8342. https://doi.org/10.1128/mcb.20.22.8329-8342.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stavreus-Evers AC et al (1997) Induction of the estrogen receptor by growth hormone and glucocorticoid substitution in primary cultures of rat hepatocytes. Steroids (ed) 62(10):647–654

    CAS  Google Scholar 

  7. Raps M et al (2014) Thyroid function, activated protein C resistance and the risk of venous thrombosis in users of hormonal contraceptives. Thromb Res 133(4):640–644

    CAS  PubMed  Google Scholar 

  8. Brent GA (2012) Hypothyroidism and thyroiditis. In: Melmed SP, Larsen PR, Kronenberg HM (eds) Williams Textbook of Endocrinology. Saunders, Philadelphia

    Google Scholar 

  9. Goodman MH et al (2009) Thyroid hormones in blood. In: Basic medical endocrinology, 4th edn. Elsevier

  10. Kuhl H, Jung-Hoffman C, Weber J, Boehm BO (1993) The effect of a biphasic desogestrel-containing oral contraceptive on carbohydrate metabolism and various hormonal parameters. Contraception 47:55–68

    CAS  PubMed  Google Scholar 

  11. Bartalena L, Robbins J (1992) Variations in thyroid hormone transport proteins and their clinical implications. Thyroid 2:237–245. https://doi.org/10.1089/thy.1992.2.237

    Article  CAS  PubMed  Google Scholar 

  12. Knopp RH, Bergelin RO, Wahl PW, Walden CE, Chapman MB (1985) Clinical chemistry alterations in pregnancy and oral contraceptive use. Obstet Gynecol 66(5):682–690

    CAS  PubMed  Google Scholar 

  13. Mandel SJ, Larsen PR, Seely EW, Brent GA (1990) Increased need for thyroxine during pregnancy in women with primary hypothyroidism. N Engl J Med 323(2):91–96. https://doi.org/10.1056/NEJM199007123230204

    Article  CAS  PubMed  Google Scholar 

  14. Dhopesh VP, Burke WM, Maany I, Ravi NV (1991) Effect of cocaine on thyroid functions. Am J Drug Alcohol Abuse 17:423–427. https://doi.org/10.3109/00952999109001601

    Article  CAS  PubMed  Google Scholar 

  15. Vasudevan N, Ogawa S, Pfaff D (2002) Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 82(4):923–944. https://doi.org/10.1152/physrev.00014.2002

    Article  CAS  PubMed  Google Scholar 

  16. Ain KB, Mori Y, Refetoff S (1987) Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen-induced elevation of serum TBG concentration. J Clin Endocrinol Metab 65(4):689–696. https://doi.org/10.1210/jcem-65-4-689

    Article  CAS  PubMed  Google Scholar 

  17. Wiegratz I, Kutschera E, Lee JH, Moore C, Mellinger U, Winkler UH, Kuhl H (2003) Effect of four oral contraceptives on thyroid hormones, adrenal and blood pressure parameters. Contraception 67(5):361–366. https://doi.org/10.1016/s0010-7824(03)00006-4

    Article  CAS  PubMed  Google Scholar 

  18. Chetkowski RJ, Meldrum DR, Steingold KA, Randle D et al (1986) Biologic effects of transdermal estradiol. N Engl J Med 314(25):1615–1620. https://doi.org/10.1056/NEJM198606193142505

    Article  CAS  PubMed  Google Scholar 

  19. Quintino-Moro A, Zantut-Wittmann DE, Silva Dos Santos PN, Melhado-Kimura V et al (2019) Thyroid function during the first year of use of the injectable contraceptive depot medroxyprogesterone acetate. Eur J Contracept Reprod Health Care 24(2):102–108. https://doi.org/10.1080/13625187.2018.1559284

    Article  CAS  PubMed  Google Scholar 

  20. Sathi P, Kalyan S, Hitchcock CL, Pudek M, Prior JC (2013) Progesterone therapy increases free thyroxine levels–data from a randomized placebo-controlled 12-week hot flush trial. Clin Endocrinol (Oxf) 79(2):282–287. https://doi.org/10.1111/cen.12128

    Article  CAS  Google Scholar 

  21. Practice Committee of the American Society for Reproductive Medicine (2006) Estrogen and progestogen therapy in postmenopausal women. Fertil Steril 86(5):S75–88. https://doi.org/10.1016/j.fertnstert.2006.07.1476

    Article  CAS  Google Scholar 

  22. Curb JD, Prentice RL, Bray PF, Langer RD, Van Horn L, Barnabei VM et al (2006) Venous thrombosis and conjugated equine estrogen in women without a uterus. Arch Intern Med 166:772–780. https://doi.org/10.1001/archinte.166.7.772

    Article  CAS  PubMed  Google Scholar 

  23. Scarabin PY (2018) Progestogens and venous thromboembolism in menopausal women: an updated oral versus transdermal estrogen meta-analysis. Climacteric 21(4):341–345. https://doi.org/10.1080/13697137.2018.1446931

    Article  CAS  PubMed  Google Scholar 

  24. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE (2017) Thrombosis and platelets: an update. Eur Heart J 38(11):785–791. https://doi.org/10.1093/eurheartj/ehw550

    Article  CAS  PubMed  Google Scholar 

  25. Chu SG, Becker RC, Berger PB, Bhatt DL et al (2010) Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost 8:148–156. https://doi.org/10.1111/j.1538-7836.2009.03584.x

    Article  CAS  PubMed  Google Scholar 

  26. Ajayi AA, Mathur R, Halushka PV (1995) Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation 91(11):2742–2747. https://doi.org/10.1161/01.cir.91.11.2742

    Article  CAS  PubMed  Google Scholar 

  27. Dalton ME (1984) The effect of progesterone administration on sex hormone binding globulin binding capacity in women with severe premenstrual syndrome. J Steroid Biochem 20(1):437–439. https://doi.org/10.1016/0022-4731(84)90249-8

    Article  CAS  PubMed  Google Scholar 

  28. Avni Findikl H, Sahin Tutak A (2018) (2018) Evaluation of the platelet indices in patients with subclinical hypothyroidism. Arch Clin Biomed Res 2(6):227–232. https://doi.org/10.26502/acbr.50170060

    Article  Google Scholar 

  29. Butkiewicz AM, Kemona H, Dymicka-Piekarska V, Matowicka-Karna J (2006) Does menopause affect thrombocytopoiesis and platelet activation? Przegl Lek 63(12):1291–1293

    PubMed  Google Scholar 

  30. Saleh AA, Ginsburg KA, Duchon TA, Dorey LG, Hirata J, Alshameeri RS, Dombrowski MP, Mammen EF (1995) Hormonal contraception and platelet function. Thromb Res 78(4):363–367. https://doi.org/10.1016/0049-3848(95)91464-v

    Article  CAS  PubMed  Google Scholar 

  31. Bulur S, Albayrak M, Bulur S, Keskin F, Köse SA, Aslantaş Y, Türker Y, Ozhan H (2012) Effect of combined oral contraceptive use on platelet volume in women at reproductive age. Clin Exp Obstet Gynecol 39(3):314–316

    CAS  PubMed  Google Scholar 

  32. Davis PJ, Mousa SA, Schechter GP (2018) New interfaces of thyroid hormone actions with blood coagulation and thrombosis. Clin Appl Thromb Hemost 24(7):1014–1019. https://doi.org/10.1177/1076029618774150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Biondi B, Palmieri EA, Lombardi G (2002) Effects of subclinical thyroid dysfunction on the heart. Ann Intern Med 137:904–914. https://doi.org/10.7326/0003-4819-137-11-200212030-00011

    Article  PubMed  Google Scholar 

  34. Tieche M, Lupi GA, Gutzwiller F et al (1981) Borderline low thyroid function and thyroid autoimmunity. Risk factors for coronary heart disease? Br Heart J 46:202–206. https://doi.org/10.1136/hrt.46.2.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Udovcic M, Pena RH, Patham B, Tabatabai L, Kansara A (2017) Hypothyroidism and the heart. Methodist Debakey Cardiovasc J 13(2):55–59. https://doi.org/10.14797/mdcj-13-2-55

    Article  PubMed  PubMed Central  Google Scholar 

  36. Biondi B (2007) Cardiovascular effects of mild hypothyroidism. Thyroid 17(7):625–630. https://doi.org/10.1089/thy.2007.0158

    Article  CAS  PubMed  Google Scholar 

  37. Jackson SR, Carter JM (1993) Platelet volume: laboratory measurement and clinical application. Blood Rev 7:104–113. https://doi.org/10.1016/s0268-960x(05)80020-7

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Cui YL, Diao MY, Chen DC, Lin ZF (2015) Use of platelet indices for determining illness severity and predicting prognosis in critically Ill patients. Chin Med J (Engl) 128(15):2012–2018. https://doi.org/10.4103/0366-6999.161346

    Article  Google Scholar 

  39. Cesari F, Marcucci R, Caporale R, Paniccia R et al (2008) Relationship between high platelet turnover and platelet function in high-risk patients with coronary artery disease on dual antiplatelet therapy. Thromb Haemost 99(5):930–935. https://doi.org/10.1160/TH08-01-0002

    Article  CAS  PubMed  Google Scholar 

  40. Kim JH, Park JH, Kim SY, Bae HY (2013) The mean platelet volume is positively correlated with serum thyrotropin concentrations in a population of healthy subjects and subjects with unsuspected subclinical hypothyroidism. Thyroid 23(1):31–37. https://doi.org/10.1089/thy.2012.0033

    Article  CAS  PubMed  Google Scholar 

  41. Demirin H, Ozhan H, Ucgun T, Celer A et al (2011) Normal range of mean platelet volume in healthy subjects: insight from a large epidemiologic study. Thromb Res 128(4):358–360. https://doi.org/10.1016/j.thromres.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  42. Kovács S, Csiki Z, Zsóri KS, Bereczky Z, Shemirani AH (2019) Characteristics of platelet count and size and diagnostic accuracy of mean platelet volume in patients with venous thromboembolism. A systematic review and meta-analysis. Platelets 30(2):139–147. https://doi.org/10.1080/09537104.2017.1414175

    Article  CAS  PubMed  Google Scholar 

  43. Korniluk A, Koper-Lenkiewicz OM, Kamińska J, Kemona H, Dymicka-Piekarska V (2019) Mean platelet volume (MPV): new perspectives for an old marker in the course and prognosis of inflammatory conditions. Mediators Inflamm 2019:9213074. https://doi.org/10.1155/2019/9213074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monzani F, Dardano A, Caraccio N (2006) Does treating subclinical hypothyroidism improve markers of cardiovascular risk? Treat Endocrinol 5:65–81. https://doi.org/10.2165/00024677-200605020-00001

    Article  CAS  PubMed  Google Scholar 

  45. Duan Y, Peng W, Wang X, Tang W et al (2009) Community-based study of the association of subclinical thyroid dysfunction with blood pressure. Endocrine 35:136–142. https://doi.org/10.1007/s12020-008-9138-y

    Article  CAS  PubMed  Google Scholar 

  46. Liu D, Jiang F, Shan Z, Wang B, Wang J, Lai Y, Chen Y, Li M, Liu H, Li C, Xue H, Li N, Yu J, Shi L, Bai X, Hou X, Zhu L, Lu L, Wang S, Xing Q, Teng (2010) A cross-sectional survey of relationship between serum TSH level and blood pressure. J Hum Hypertens 24:134–138

    CAS  PubMed  Google Scholar 

  47. Nah EH, Lee JG (2009) The relationship between thyroid function and the risk factors of cardiovascular disease at female medical checkups. Korean J Lab Med 29(4):286–292. https://doi.org/10.3343/kjlm.2009.29.4.286

    Article  CAS  PubMed  Google Scholar 

  48. Park YJ, Lee EJ, Lee YJ, Choi SH, Park JH et al (2010) Subclinical hypothyroidism (SCH) is not associated with metabolic derangement, cognitive impairment, depression or poor quality of life (QoL) in elderly subjects. Arch Gerontol Geriatr 50(3):e68–73. https://doi.org/10.1016/j.archger.2009.05.015

    Article  CAS  PubMed  Google Scholar 

  49. Takashima N, Niwa Y, Mannami T, Tomoike H, Iwai N (2007) Characterization of subclinical thyroid dysfunction from cardiovascular and metabolic viewpoints: the Suita study. Circ J 71:191–195. https://doi.org/10.1253/circj.71.191

    Article  CAS  PubMed  Google Scholar 

  50. Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ et al (2006) Subclinical thyroid dysfunction and blood pressure: a community-based study. Clin Endocrinol (Oxf) 65:486–491. https://doi.org/10.1111/j.1365-2265.2006.02619.x

    Article  CAS  Google Scholar 

  51. Kuusi T, Taskinen MR, Nikkila EA (1988) Lipoproteins, lipolytic enzymes, and hormonal status in hypothyroid women at different levels of substitution. J Clin Endocrinol Metab 66:51–56. https://doi.org/10.1210/jcem-66-1-51

    Article  CAS  PubMed  Google Scholar 

  52. O’Brien T, Dinneen SF, O’Brien PC, Palumbo PJ (1993) Hyperlipidemia in patients with primary and secondary hypothyroidism. Mayo Clin Proc 68(9):860–866. https://doi.org/10.1016/s0025-6196(12)60694-6

    Article  PubMed  Google Scholar 

  53. Caraccio N, Ferrannini E, Monzani F (2002) Lipoprotein profile in subclinical hypothyroidism: response to levothyroxine replacement, a randomized placebo-controlled study. J Clin Endocrinol Metab 87:1533–1538. https://doi.org/10.1210/jcem.87.4.8378

    Article  CAS  PubMed  Google Scholar 

  54. Meier C, Staub JJ, Roth CB, Guglielmetti M, Kunz M et al (2001) TSH-controlled L-thyroxine therapy reduces cholesterol levels and clinical symptoms in subclinical hypothyroidism: a double blind, placebo-controlled trial (Basel Thyroid Study). J Clin Endocrinol Metab 86:4860–4866. https://doi.org/10.1210/jcem.86.10.7973

    Article  CAS  PubMed  Google Scholar 

  55. Liu XL, He S, Zhang SF, Wang J, Sun XF, Gong CM (2014) Alteration of lipid profile in subclinical hypothyroidism: a meta-analysis. Med Sci Monit 20:1432–1441. https://doi.org/10.12659/MSM.891163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. La Vignera S, Condorelli R, Vicari E, Calogero AE (2012) Endothelial dysfunction and subclinical hypothyroidism: a brief review. J Endocrinol Invest 35(1):96–103. https://doi.org/10.3275/8190

    Article  CAS  PubMed  Google Scholar 

  57. Regidor PA (2014) Progesterone in peri- and post-menopause: a review. Geburtshilfe Frauenheilkd 74:995–1002. https://doi.org/10.1055/s-0034-1383297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sobbrio GA, Granata A, Granese D, D'Arrigo F, Panacea A et al (1991) Sex hormone binding globulin, cortisol binding globulin, thyroxine binding globulin, ceruloplasmin: changes in treatment with two oral contraceptives low in oestrogen. Clin Exp Obstet Gynecol 18(1):43–45

    CAS  PubMed  Google Scholar 

  59. Benencia H, Ropelato MG, Rosales M, Mesch V, Siseles N et al (1998) Thyroid profile modifications during oral hormone replacement therapy in postmenopausal women. Gynecol Endocrinol 12(3):179–184. https://doi.org/10.3109/09513599809015542

    Article  CAS  PubMed  Google Scholar 

  60. Druckmann R (2009) Profile of the progesterone derivative chlormadinone acetate - pharmacodynamic properties and therapeutic applications. Contraception 79(4):272–281. https://doi.org/10.1016/j.contraception.2008.10.017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. La Vignera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

No informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torre, F., Calogero, A.E., Condorelli, R.A. et al. Effects of oral contraceptives on thyroid function and vice versa. J Endocrinol Invest 43, 1181–1188 (2020). https://doi.org/10.1007/s40618-020-01230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-020-01230-8

Keyword

Navigation