Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

“Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants

Abstract

Preterm infants are increasingly diagnosed as having “extrauterine growth restriction” (EUGR) or “postnatal growth failure” (PGF). Usually EUGR/PGF is diagnosed when weight is <10th percentile at either discharge or 36–40 weeks postmenstrual age. The reasons why the phrases EUGR/PGF are unhelpful include, they: (i) are not predictive of adverse outcome; (ii) are based only on weight without any consideration of head or length growth, proportionality, body composition, or genetic potential; (iii) ignore normal postnatal weight loss; (iv) are usually assessed prior to growth slowing of the reference fetus, around 36–40 weeks, and (v) are usually based on an arbitrary statistical growth percentile cut-off. Focus on EUGR/PGF prevalence may benefit with better attention to nutrition but may also harm with nutrition delivery above infants’ actual needs. In this paper, we highlight challenges associated with such arbitrary cut-offs and opportunities for further refinement of understanding growth and nutritional needs of preterm neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Among healthy (no neonatal morbidities, no maternal diabetes, minimal infant respiratory support and were nourished by parenteral and enteral nutrition according to protocols) preterm infants, ~25% weighed less than the 10th percentile (1st dashed line below the solid line representing the 50th percentile) after their physiological postnatal weight loss.
Fig. 2: Weight gain patterns of preterm infants relative to intrauterine weight references, showing relative catch-up by the preterm infants after 36 weeks as fetal weight gain slows.

Similar content being viewed by others

References

  1. Fenton TR, Chan HT, Madhu A, Griffin IJ, Hoyos A, Ziegler EE, et al. Preterm infant growth velocity calculations: a systematic review. Pediatrics. 2017;139:e20162045.

    PubMed  Google Scholar 

  2. Hack M, Merkatz IR, Gordon D, Jones PK, Fanaroff AA. The prognostic significance of postnatal growth in very low-birth weight infants. Am J Obstet Gynecol. 1982;143:693–9.

    CAS  PubMed  Google Scholar 

  3. Shah PS, Wong KY, Merko S, Bishara R, Dunn M, Asztalos E, et al. Postnatal growth failure in preterm infants: ascertainment and relation to long-term outcome. J Perinat Med. 2006;34:484–9.

    PubMed  Google Scholar 

  4. Zozaya C, Díaz C, Saenz de Pipaón M. How should we define postnatal growth restriction in preterm infants? Neonatology 2018;114:177–80.

    PubMed  Google Scholar 

  5. Tudehope DI, Burns Y, O’Callaghan M, Mohay H, Silcock A. The relationship between intrauterine and postnatal growth on the subsequent psychomotor development of very low birthweight (VLBW) infants. Aust Paediatr J. 1983;19:3–8.

    CAS  PubMed  Google Scholar 

  6. Committee on Nutrition American Academy Pediatrics. Assessing nutrition status. In: Pediatric Nutrition Handbook. 8th ed. Elk Grove Village Il, American Academy Pediatrics; 2020.

  7. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.

    CAS  PubMed  Google Scholar 

  8. Fenton TR, Nasser R, Eliasziw M, Kim JH, Bilan D, Sauve R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013;13:92.

    PubMed  PubMed Central  Google Scholar 

  9. Rochow N, Raja P, Liu K, Fenton T, Landau-Crangle E, Göttler S, et al. Physiological adjustment to postnatal growth trajectories in healthy preterm infants. Pediatr Res. 2016;79:870–9.

    PubMed  Google Scholar 

  10. Bertino E, Coscia A, Mombrò M, Boni L, Rossetti G, Fabris C, et al. Postnatal weight increase and growth velocity of very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2006;91:F349–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cole TJ, Statnikov Y, Santhakumaran S, Pan H, Modi N. Birth weight and longitudinal growth in infants born below 32 weeks’ gestation: a UK population study. Arch Dis Child Fetal Neonatal Ed. 2014;99:F34–40.

    PubMed  Google Scholar 

  12. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    PubMed  PubMed Central  Google Scholar 

  13. Cole TJ, Williams AF, Wright CM, RCPCH Growth Chart Expert Group. Revised birth centiles for weight, length and head circumference in the UK-WHO growth charts. Ann Hum Biol. 2011;38:7–11.

    PubMed  Google Scholar 

  14. Franz AR, Pohlandt F, Bode H, Mihatsch WA, Sander S, Kron M, et al. Intrauterine, early neonatal, and postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics. 2009;123:e101–9.

    PubMed  Google Scholar 

  15. Ehrenkranz RA, Younes N, Lemons JA, Fanaroff AA, Donovan EF, Wright LL, et al. Longitudinal growth of hospitalized very low birth weight infants. Pediatrics. 1999;104:280–9.

    CAS  PubMed  Google Scholar 

  16. Regev RH, Arnon S, Litmanovitz I, Bauer-Rusek S, Boyko V, Lerner-Geva L, et al. Association between neonatal morbidities and head growth from birth until discharge in very-low-birthweight infants born preterm: a population-based study. Dev Med Child Neurol. 2016;58:1159–66.

    PubMed  Google Scholar 

  17. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006;117:1253–61.

    PubMed  Google Scholar 

  18. Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P, et al. Infant growth before and after term: effects on neurodevelopment in preterm infants. Pediatrics. 2011;128:e899–906.

    PubMed  PubMed Central  Google Scholar 

  19. Ong KK, Kennedy K, Castañeda-Gutiérrez E, Forsyth S, Godfrey KM, Koletzko B, et al. Postnatal growth in preterm infants and later health outcomes: a systematic review. Acta Paediatr. 2015;104:974–86.

    PubMed  PubMed Central  Google Scholar 

  20. Sammallahti S, Pyhälä R, Lahti M, Lahti J, Pesonen A-K, Heinonen K. et al. Infant growth after preterm birth and neurocognitive abilities in young adulthood. J Pediatr. 2014;165:1109–15.

    PubMed  Google Scholar 

  21. Raghuram K, Yang J, Church PT, Cieslak Z, Synnes A, Mukerji A, et al. Head growth trajectory and neurodevelopmental outcomes in preterm neonates. Pediatrics. 2017;140:e20170216.

    PubMed  Google Scholar 

  22. Gross SJ, Eckerman CO. Normative early head growth in very-low-birth-weight infants. J Pediatr 1983;103:946–9.

    CAS  PubMed  Google Scholar 

  23. Georgieff MK, Hoffman JS, Pereira GR, Bernbaum J, Hoffman-Williamson M. Effect of neonatal caloric deprivation on head growth and 1-year developmental status in preterm infants. J Pediatr. 1985;107:581–7.

    CAS  PubMed  Google Scholar 

  24. Belfort MB, Gillman MW, Buka SL, Casey PH, McCormick MC. Preterm infant linear growth and adiposity gain: trade-offs for later weight status and intelligence quotient. J Pediatr. 2013;163:1564–9.

    PubMed  Google Scholar 

  25. Dusick AM, Poindexter BB, Ehrenkranz RA, Lemons JA. Growth failure in the preterm infant: can we catch up? Semin Perinatol. 2003;27:302–10.

    PubMed  Google Scholar 

  26. Neubauer V, Griesmaier E, Pehböck-Walser N, Pupp-Peglow U, Kiechl-Kohlendorfer U. Poor postnatal head growth in very preterm infants is associated with impaired neurodevelopment outcome. Acta Paediatr. 2013;102:883–8.

    PubMed  Google Scholar 

  27. Weisglas-Kuperus N, Hille ETM, Duivenvoorden HJ, Finken MJJ, Wit JM, van Buuren S, et al. Intelligence of very preterm or very low birthweight infants in young adulthood. Arch Dis Child—Fetal Neonatal Ed. 2008;94:F196–200.

    PubMed  Google Scholar 

  28. Guellec I, Lapillonne A, Marret S, Picaud J-C, Mitanchez D, Charkaluk M-L, et al. Effect of intra- and extrauterine growth on long-term neurologic outcomes of very preterm infants. J Pediatr. 2016;175:93–99.e1.

    PubMed  Google Scholar 

  29. Nash A, Dunn M, Asztalos E, Corey M, Mulvihill-Jory B, O’Connor DL. Pattern of growth of very low birth weight preterm infants, assessed using the WHO Growth Standards, is associated with neurodevelopment. Appl Physiol Nutr Metab. 2011;36:562–9.

    PubMed  Google Scholar 

  30. Pineda RG, Stransky KE, Rogers C, Duncan MH, Smith GC, Neil J, et al. The single-patient room in the NICU: maternal and family effects. J Perinatol. 2012;32:545–51.

    CAS  PubMed  Google Scholar 

  31. Pineda R, Durant P, Mathur A, Inder T, Wallendorf M, Schlaggar BL. Auditory exposure in the neonatal intensive care unit: room type and other predictors. J Pediatr. 2017;183:56–66.e3.

    PubMed  PubMed Central  Google Scholar 

  32. Bærug A, Laake P, Løland BF, Tylleskär T, Tufte E, Fretheim A. Explaining socioeconomic inequalities in exclusive breast feeding in Norway. Arch Dis Child. 2017;102:708–14.

    PubMed  Google Scholar 

  33. Benavente-Fernández I, Synnes A, Grunau RE, Chau V, Ramraj C, Glass T, et al. Association of socioeconomic status and brain injury with neurodevelopmental outcomes of very preterm children. JAMA Netw Open. 2019;2:e192914.

    PubMed  PubMed Central  Google Scholar 

  34. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9:672–7.

    PubMed  Google Scholar 

  35. O’Connor DL, Gibbins S, Kiss A, Bando N, Brennan-Donnan J, Ng E, et al. Effect of supplemental donor human milk compared with preterm formula on neurodevelopment of very low-birth-weight infants at 18 months: a randomized clinical trial. JAMA. 2016;316:1897–905.

    PubMed  Google Scholar 

  36. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P, et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304:1675–83.

    CAS  PubMed  Google Scholar 

  37. Keim SA, Boone KM, Klebanoff MA, Turner AN, Rausch J, Nelin MA, et al. Effect of docosahexaenoic acid supplementation vs placebo on developmental outcomes of toddlers born preterm: a randomized clinical Trial. JAMA Pediatr. 2018;172:1126–34.

    PubMed  PubMed Central  Google Scholar 

  38. Makrides M, Gibson RA, McPhee AJ, Collins CT, Davis PG, Doyle LW, et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial. JAMA. 2009;301:175–82.

    CAS  PubMed  Google Scholar 

  39. Johnson MJ, Wootton SA, Leaf AA, Jackson AA. Preterm birth and body composition at term equivalent age: a systematic review and meta-analysis. Pediatrics. 2012;130:e640–9.

    PubMed  Google Scholar 

  40. Giannì ML, Roggero P, Piemontese P, Morlacchi L, Bracco B, Taroni F, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr. 2015;104:e119–23.

    PubMed  Google Scholar 

  41. Roggero P, Giannì ML, Liotto N, Taroni F, Orsi A, Amato O, et al. Rapid recovery of fat mass in small for gestational age preterm infants after term. Stanojevic S, editor. PLoS ONE. 2011;6:e14489.

  42. de Onis M. The use of anthropometry in the prevention of childhood overweight and obesity. Int J Obes Relat Metab Disord. 2004;28 (Suppl 3):S81–5.

    PubMed  Google Scholar 

  43. Lorch SA. The clinical and policy implications of new measures of premature infant growth. Pediatrics. 2015;135:e703–4.

    PubMed  Google Scholar 

  44. Al-Theyab NA, Donovan TJ, Eiby YA, Colditz PB, Lingwood BE. Fat trajectory after birth in very preterm infants mimics healthy term infants. Pediatr Obes. 2019;14:e12472.

    CAS  PubMed  Google Scholar 

  45. Kiger JR, Taylor SN, Wagner CL, Finch C, Katikaneni L. Preterm infant body composition cannot be accurately determined by weight and length. J Neonatal Perinat Med. 2016;9:285–90.

    CAS  Google Scholar 

  46. Heimler R, Doumas BT, Jendrzejczak BM, Nemeth PB, Hoffman RG, Nelin LD. Relationship between nutrition, weight change, and fluid compartments in preterm infants during the first week of life. J Pediatr. 1993;122:110–4.

    CAS  PubMed  Google Scholar 

  47. Lorenz JM, Kleinman LI, Ahmed G, Markarian K. Phases of fluid and electrolyte homeostasis in the extremely low birth weight infant. Pediatrics 1995;96:484–9.

    CAS  PubMed  Google Scholar 

  48. Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Bell E, (editor.) Cochrane database Syst Rev. 2000;12:CD000503.

  49. Hartnoll G, Bétrémieux P, Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed. 2000;82:F24–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Senterre T, Rigo J. Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants. Acta Paediatr. 2012;101:e64–70.

    PubMed  Google Scholar 

  51. Olsen IE, Groveman SA, Lawson ML, Clark RH, Zemel BS. New intrauterine growth curves based on United States data. Pediatrics. 2010;125:e214–24.

    PubMed  Google Scholar 

  52. Villar J, Giuliani F, Bhutta ZA, Bertino E, Ohuma EO, Ismail LC, et al. Postnatal growth standards for preterm infants: the preterm postnatal follow-up study of the INTERGROWTH-21(st) project. Lancet Glob Heal 2015;3:e681–91.

    Google Scholar 

  53. Goldberg DL, Becker PJ, Brigham K, Carlson S, Fleck L, Gollins L, et al. Identifying Malnutrition in Preterm and Neonatal Populations: Recommended Indicators. J Acad Nutr Diet. 2018;118:1571–82.

    PubMed  Google Scholar 

  54. Fenton TR, Griffin IJ, Hoyos A, Groh-Wargo S, Anderson D, Ehrenkranz RA, et al. Accuracy of preterm infant weight gain velocity calculations vary depending on method used and infant age at time of measurement. Pediatr Res Pediatr Res. 2019;85:650–4.

    PubMed  Google Scholar 

  55. Ofek Shlomai N, Reichman B, Lerner-Geva L, Boyko V, Bar-Oz B. Population-based study shows improved postnatal growth in preterm very-low-birthweight infants between 1995 and 2010. Acta Paediatr. 2014;103:498–503.

    PubMed  Google Scholar 

  56. Clark RH, Thomas P, Peabody J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics. 2003;111:986–90.

    PubMed  Google Scholar 

  57. Cooke RJ, Ainsworth SB, Fenton AC. Postnatal growth retardation: a universal problem in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2004;89:F428–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics. 2001;107:270–3.

    CAS  PubMed  Google Scholar 

  59. Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ, et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics. 2001;107:E1.

    CAS  PubMed  Google Scholar 

  60. Roggero P, Giannì ML, Amato O, Orsi A, Piemontese P, Cosma B, et al. Postnatal growth failure in preterm infants: recovery of growth and body composition after term. Early Hum Dev. 2008;84:555–9.

    PubMed  Google Scholar 

  61. Niklasson A, Albertsson-Wikland K. Continuous growth reference from 24th week of gestation to 24 months by gender. BMC Pediatr. 2008;8:8.

    PubMed  PubMed Central  Google Scholar 

  62. Porta M. Dictionary of epidemiology. 6th ed. New York, NY: Oxford University Press; 2014.

  63. Corpeleijn WE, Kouwenhoven SMP, van Goudoever JB. Optimal growth of preterm infants. World Rev Nutr Diet. 2013;106:149–55.

    PubMed  Google Scholar 

  64. Horbar JD, Ehrenkranz RA, Badger GJ, Edwards EM, Morrow KA, Soll RF, et al. Weight growth velocity and postnatal growth failure in infants 501 to 1500 grams: 2000–13. Pediatrics. 2015;136:e84–92.

    PubMed  Google Scholar 

  65. Ng DVY, Brennan-Donnan J, Unger S, Bando N, Gibbins S, Nash A, et al. How close are we to achieving energy and nutrient goals for very low birth weight infants in the first week? J Parenter Enter Nutr. 2017;41:500–6.

    Google Scholar 

  66. Hay WW. Strategies for feeding the preterm infant. Neonatology. 2008;94:245–54.

    PubMed  PubMed Central  Google Scholar 

  67. Odom EC, Li R, Scanlon KS, Perrine CG, Grummer-Strawn L. Reasons for earlier than desired cessation of breastfeeding. Pediatrics. 2013;131:e726–32.

    PubMed  PubMed Central  Google Scholar 

  68. Jain A. Where all the children are above average. Pediatrics. 2009;124:e803–4.

    PubMed  Google Scholar 

  69. Ben-Joseph EP, Dowshen SA, Izenberg N. Do parents understand growth charts? A national, internet-based survey. Pediatrics. 2009;124:1100–9.

    PubMed  Google Scholar 

  70. Canadian Task Force on Preventive Health Care, the Evidence Review and Synthesis Centre, and the Prevention Guidelines Division of the Public Health Agency of Canada Canadian Task Force on Preventive Health Care Procedure Manual 2014. https://canadiantaskforce.ca/wp-content/uploads/2016/12/procedural-manual-en_2014_Archived.pdf

  71. Kramer MS, Zhang X, Dahhou M, Yang S, Martin RM, Oken E, et al. Does fetal growth restriction cause later obesity? Pitfalls in analyzing causal mediators as confounders. Am J Epidemiol. 2017;185:585–90.

    PubMed  PubMed Central  Google Scholar 

  72. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet. 2002;360:659–65.

    PubMed  Google Scholar 

  73. Paneth N, Ahmed F, Stein AD. Early nutritional origins of hypertension: a hypothesis still lacking support. J Hypertens Suppl. 1996;14:S121–9.

    CAS  PubMed  Google Scholar 

  74. Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ. 1994;309:188.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–77.

    CAS  PubMed  Google Scholar 

  76. Martin CR, Brown YF, Ehrenkranz RA, O’Shea TM, Allred EN, Belfort MB, et al. Nutritional practices and growth velocity in the first month of life in extremely premature infants. Pediatrics. 2009;124:649–57.

    PubMed  PubMed Central  Google Scholar 

  77. Stevens TP, Shields E, Campbell D, Combs A, Horgan M, La Gamma EF, et al. Statewide initiative to reduce postnatal growth restriction among infants. J Pediatr. 2018;197:82–9.e2.

    PubMed  Google Scholar 

  78. Piris Borregas S, López Maestro M, Torres Valdivieso MJ, Martínez Ávila JC, Bustos Lozano G, Pallás Alonso CR. Improving nutritional practices in premature infants can increase their growth velocity and the breastfeeding rates. Acta Paediatr. 2017;106:768–72.

    PubMed  Google Scholar 

  79. Tan MJ, Cooke RW. Improving head growth in very preterm infants—a randomised controlled trial I: neonatal outcomes. Arch Dis Child—Fetal Neonatal Ed. 2008;93:F337–41.

    CAS  PubMed  Google Scholar 

  80. Khan Z, Morris N, Unterrainer H, Haiden N, Holasek SJ, Urlesberger B. Effect of standardized feeding protocol on nutrient supply and postnatal growth of preterm infants: a prospective study. J Neonatal Perinat Med. 2018;11:11–9.

    CAS  Google Scholar 

  81. Darrow MCJ, Li H, Prince A, McClary J, Walsh MC. Improving extrauterine growth: evaluation of an optimized, standardized neonatal parenteral nutrition protocol. J Perinatol. 2019;39:504–12.

    CAS  PubMed  Google Scholar 

  82. Miller M, Donda K, Bhutada A, Rastogi D, Rastogi S. Transitioning preterm infants from parenteral nutrition: a comparison of 2 protocols. J Parenter Enter Nutr. 2017;41:1371–9.

    Google Scholar 

  83. Meyers JM, Bann CM, Stoll BJ, D’Angio CT, Bell EF, Duncan AF, et al. Neurodevelopmental outcomes in postnatal growth-restricted preterm infants with postnatal head-sparing. J Perinatol. 2016;36:1116–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Meyers JM, Tan S, Bell EF, Duncan AF, Guillet R, Stoll BJ, et al. Neurodevelopmental outcomes among extremely premature infants with linear growth restriction. J Perinatol. 2019;39:193–202.

    CAS  PubMed  Google Scholar 

  85. Ramel SE, Demerath EW, Gray HL, Younge N, Boys C, Georgieff MK. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology. 2012;102:19–24.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rhonda Clark and Jim Hawkins, the parents of 27-week twins, for their endorsement of these concepts.

Author contributions

TRF conceptualized and designed the study, drafted the initial manuscript, and reviewed and revised the manuscript. BC, DG, RN, BA, ME, WWH, AH, DA, FB, IG, NE, NR, ST, TS, RJS, SE, SG-W, DA, and PSS critically reviewed and revised the manuscript for important intellectual content All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanis R. Fenton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenton, T.R., Cormack, B., Goldberg, D. et al. “Extrauterine growth restriction” and “postnatal growth failure” are misnomers for preterm infants. J Perinatol 40, 704–714 (2020). https://doi.org/10.1038/s41372-020-0658-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-0658-5

This article is cited by

Search

Quick links