Skip to main content
Log in

Rheological response in shear flows of a thermosensitive elastic liquid in the presence of some additives

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this paper, the influence of clobetasol propionate and sodium dodecyl sulfate on the viscoelastic modules and gelation transition of aqueous solutions of poloxamer 407 are investigated experimentally. The influence of the polymer volume fraction is also examined. The experimental investigations are carried out with eight different samples of solutions. Four of them are free of additives varying just on macromolecule volume fraction. The other four samples are produced from the previous ones by addition of clobetasol and a surfactant (sodium dodecyl sulfate) in a volume fraction compatible with commercial applications. All samples are sheared in a high-performance rheometer of parallel disks with an automatic control of gap and temperature. The first set of tests are carried out under the condition of steady shear. From these tests, we obtain results for the apparent viscosity of the solutions of shear rate for two different temperatures, 6C and 36C. While a shear-thinning behavior is verified for the temperature of 36C, the viscosity is observed to have a non-shear rate dependence at 6C for all samples. The second tests deal with non-isotherm trials under a regime of small amplitude oscillatory shear, in a temperature range from 3.5 to 50C. The viscoelastic moduli of storage and loss of energy are obtained as a function of the temperature for fixed values of frequency and angular deflection. The gelation transition of the polymer solution is characterized as a sudden change in the viscoelastic modulus. This interesting finding is directly associated with microstructure transitions induced by increase of the temperature. We show results of the temperature of micellization and the gelation temperature as a function of the polymer volume fraction for a suspension in the absence of additives and with a certain volume fraction of SDS (surfactant) and clobetasol propionate. The presence of additives reinforces the link of micelles making the structure more stable and resistant to breakup. The effect of SDS or clobetasol propionate on gelation is seen to be very important, and there is a lack of systematic research about additives. We also present a result for the shear elastic modulus of the solution as a function of the polymer volume fraction for 6C. This shows that the micelles-like chain formation at a given temperature leads to a solid characteristic of the polymer that can be interpreted as a yield stress even at low temperatures. The presence of SDS and clobetasol propionate produces new rheological response of the poloxamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akash MSH, Rehman K, Chen S (2014) Pluronic f127-based thermosensitive gels for delivery of therapeutic proteins and peptides. Polym Rev 54(4):573–597

    Article  CAS  Google Scholar 

  • Alexandridis P, Hatton TA (1995) Poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp 96(1–2):1–46

    Article  CAS  Google Scholar 

  • Alexandridis P, Lindman B (2000) Amphiphilic block copolymers: self-assembly and applications. Elsevier, Amsterdam

  • Barnes HA, Hutton JF,  Walters K (1989) An introduction to rheology, vol 3. Elsevier, Amsterdam

  • Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

  • Bazargan V, Stoeber B (2010) Flow control using a thermally actuated microfluidic relay valve. J Microelectromech Syst 19(5):1079–1087

    Article  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. Wiley-Interscience, New York

  • Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena. John Wiley & Sons

  • Cabana A, Aït-Kadi A, Juhász J (1997) Study of the gelation process of polyethylene oxidea–polypropylene oxideb– polyethylene oxidea copolymer (poloxamer 407) aqueous solutions. J Colloid Interface Sci 190(2):307–312

    Article  CAS  Google Scholar 

  • Cox W, Merz E (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622

    Article  CAS  Google Scholar 

  • Cruz OA, Zarnegar SR, Myers SE (1995) Treatment of periocular capillary hemangloma with topical clobetasol propionate. Ophthalmology 102(12):2012–2015

    Article  CAS  Google Scholar 

  • Denkova A, Mendes E, Coppens MO (2009) Rheology of worm-like micelles composed of tri-block copolymer in the limit of slow dynamics. J Rheol 53(5):1087–1100

    Article  CAS  Google Scholar 

  • Dumortier G, Grossiord J, Zuber M, Couarraze G, Chaumeil J (1991) Rheological study of a thermoreversible morphine gel. Drug Dev Ind Pharm 17(9):1255–1265

    Article  CAS  Google Scholar 

  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC (2006) A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23(12):2709–2728. https://doi.org/10.1007/s11095-006-9104-4

    Article  CAS  Google Scholar 

  • Escobar-Chávez JJ, López-Cervantes M, Naik A, Kalia Y, Quintanar-Guerrero D, Ganem-Quintanar A (2006) Applications of thermo-reversible pluronic f-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 9(3):339–358

    Google Scholar 

  • Habas JP, Pavie E, Lapp A, Peyrelasse J (2004) Understanding the complex rheological behavior of peo–ppo–peo copolymers in aqueous solution. J Rheol 48(1):1–21

    Article  CAS  Google Scholar 

  • Hopkins CC, de Bruyn JR (2019) Gelation and long-time relaxation of aqueous solutions of pluronic f127. J Rheol 63(1):191–201

    Article  CAS  Google Scholar 

  • Hvidt S, Joergensen EB, Brown W, Schillen K (1994) Micellization and gelation of aqueous solutions of a triblock copolymer studied by rheological techniques and scanning calorimetry. J Phys Chem 98(47):12320–12328

    Article  CAS  Google Scholar 

  • Hyun K, Nam JG, Wilhellm M, Ahn KH, Lee SJ (2006) Large amplitude oscillatory shear behavior of peo-ppo-peo triblock copolymer solutions. Rheol Acta 45(3):239–249

    Article  CAS  Google Scholar 

  • Jalaal M, Stoeber B (2014) Controlled spreading of thermo-responsive droplets. Soft Matter 10(6):808–812

    Article  CAS  Google Scholar 

  • Jalaal M, Cottrell G, Balmforth N, Stoeber B (2017) On the rheology of pluronic f127 aqueous solutions. J Rheol 61(1):139–146

    Article  CAS  Google Scholar 

  • Jegasothy B, Jacobson C, Levine N, Millikan L, Olsen E, Pinnell S, Cole G, Weinstein G, Porter M (1985) Clobetasol propionate versus fluocinonide creams in psoriasis and eczema. Int J Dermatol 24(7):461–465

    Article  CAS  Google Scholar 

  • Juhasz J, Lenaerts V, Raymond P, Ong H (1989) Diffusion of rat atrial natriuretic factor in thermoreversible poloxamer gels. Biomaterials 10(4):265–268

    Article  CAS  Google Scholar 

  • Liu T, Chu B (2000) Formation of homogeneous gel-like phases by mixed triblock copolymer micelles in aqueous solution: Fcc to bcc phase transition. J Appl Crystallogr 33(3):727–730

    Article  CAS  Google Scholar 

  • Luckham PF, Ukeje MA (1999) Effect of particle size distribution on the rheology of dispersed systems. J Colloid Interface Sci 220(2):347–356

    Article  CAS  Google Scholar 

  • Miller SC, Drabik BR (1984) Rheological properties of poloxamer vehicles. Int J Pharm 18(3):269–276

    Article  CAS  Google Scholar 

  • Moore T, Croy S, Mallapragada S, Pandit N (2000) Experimental investigation and mathematical modeling of pluronic® f127 gel dissolution: drug release in stirred systems. J Control Release 67(2–3):191–202

    Article  CAS  Google Scholar 

  • Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A (2013) Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: ex vivo permeation and skin irritation studies. Colloids Surf B: Biointerfaces 102:86–94

    Article  CAS  Google Scholar 

  • Pitto-Barry A, Barry NP (2014) Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym Chem 5(10):3291–3297

    Article  CAS  Google Scholar 

  • Prud’homme RK, Wu G, Schneider DK (1996) Structure and rheology studies of poly (oxyethylene- oxypropylene- oxyethylene) aqueous solution. Langmuir 12(20):4651–4659

    Article  Google Scholar 

  • Smith JG (2010) Topical formulation of low level clobetasol propionate for treating disorders of the skin and mucous membranes. US Patent App. 12/660,181

  • Steinleitner A, Lambert H, Kazensky C, Cantor B (1991) Poloxamer 407 as an intraperitoneal barrier material for the prevention of postsurgical adhesion formation and reformation in rodent models for reproductive surgery. Obstet Gynecol 77(1):48–52

    CAS  Google Scholar 

  • Stoeber B, Yang Z, Liepmann D, Muller SJ (2005) Flow control in microdevices using thermally responsive triblock copolymers. J Microelectromech Syst 14(2):207–213

    Article  Google Scholar 

  • Stoeber B, Hu CMJ, Liepmann D, Muller SJ (2006) Passive flow control in microdevices using thermally responsive polymer solutions. Phys Fluids 18(5):053103

    Article  Google Scholar 

  • Takats Z, Vekey K, Hegedüs L (2001) Qualitative and quantitative determination of poloxamer surfactants by mass spectrometry. Rapid Commun Mass Spectrom 15(10):805–810

    Article  CAS  Google Scholar 

  • Tanner RI (2000) Engineering rheology, vol 52. OUP Oxford

  • Tung CYM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 27(2):569–574

    Article  CAS  Google Scholar 

  • Wanka G, Hoffmann H, Ulbricht W (1990) The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid Polym Sci 268(2):101–117

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

    Article  CAS  Google Scholar 

  • Yelles MHB, Tan VT, Danede F, Willart J, Siepmann J (2017) Plga implants: how poloxamer/peo addition slows down or accelerates polymer degradation and drug release. J Control Release 253:19–29

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank T. Ângelo and T. Gratieri from the Department of Pharmacy (UnB) for kindly providing all the samples of polymer liquid tested and for helpful discussions during this work.

Funding

This work was supported in part by the grants 441340/2014-8, 402371/2013-5, and 305764/2015-2 from the Council of the Ministry of Science and Technology (CNPq-Brazil). I.D.P acknowledges the fellowship supported by the Foundation of the Ministry of Science and Technology (CAPES-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ricardo Cunha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, I.D.O., Cunha, F.R. Rheological response in shear flows of a thermosensitive elastic liquid in the presence of some additives. Rheol Acta 59, 307–316 (2020). https://doi.org/10.1007/s00397-020-01194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01194-9

Keywords

Navigation