Skip to main content
Log in

Effect of titanium oxide ceramic particles concentration on microstructure and corrosion behaviour of \(\text {Ni}\)\(\text {P}\)\(\text {Al}_{{2}}\text {O}_{{3}}\)\(\text {TiO}_{{2}}\) composite coating

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Composite coatings are coatings that have been considered in terms of properties, such as corrosion resistance, oxidation resistance and excellent hardness. In this study, \(\hbox {Ni}\)\(\hbox {P}\)\(\hbox {Al}_{2}\hbox {O}_{3}\)\(\hbox {TiO}_{2}\) composite coating was made on AISI 316 steel using direct current deposition technique. The microstructure of the coating and its corrosion resistance were studied by changing the amount of titanium oxide (1, 2, 3 and \(4~\hbox {g l}^{-1})\) in the bath. To investigate the morphology of the coating and the analysis of the coated material, a scanning electron microscope (SEM) and EDS microscopy were conducted, respectively. The results showed that in the bath containing \(4~\hbox {g l}^{-1}\) titanium oxide, the coating is perfectly uniform and continuous, while by reducing the amount of titanium oxide, it is not possible to form a suitable coating on the entire surface of the substrate. To investigate the corrosion resistance, the potentiodynamic polarization and electrochemical impedance spectroscopy tests in aqueous solution of 3.5% NaCl were carried out on coated and uncoated samples. The results of these tests were also correlated with microscopic images and showed that the coatings in a bath containing \(4~\hbox {g l}^{-1}\) titanium oxide has the highest corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu Q, Zhang G, Qiu Y and Guo X 2011 Corros. Sci. 53 4065

    CAS  Google Scholar 

  2. Wang Z, Cong Y, Zhang T, Shao Y and Meng G 2011 Int. J. Electrochem. Sci. 6 5521

    CAS  Google Scholar 

  3. Yin Y, Niu L, Lua M, Guo W and Chen S 2009 Appl. Surf. Sci. 225 9193

    Google Scholar 

  4. Wang Y, Wang W, Liu Y, Zhong L and Wang J 2011 Corros. Sci. 53 2963

    CAS  Google Scholar 

  5. Cheraghi H, Shahmiri M and Sadeghian Z 2012 Thin Solid Films 522 289

    CAS  Google Scholar 

  6. Xu P, Lin Ch, Zhou Ch and Yi W 2014 Surf. Coat. Technol. 238 9

    CAS  Google Scholar 

  7. Xu H, Liu W, Cao L, Su G and Duan R 2014 Appl. Surf. Sci. 301 508

    CAS  Google Scholar 

  8. Li S and Fu J 2013 Corros. Sci. 68 101

    CAS  Google Scholar 

  9. Obadele B A, Lepule M L, Andrews A and Olubambi P A 2014 Tribol. Int. 78 160

    CAS  Google Scholar 

  10. Lazar A M, Yespica W P, Marcelin S, Pébère N, Samélor D, Tendero C et al 2014 Corros. Sci. 81 125

    CAS  Google Scholar 

  11. Uribe E, Salas O, Maximo D M, Oseguera J, Lepienski C M, Torres R D et al 2015 Surf. Eng. 31 114

    CAS  Google Scholar 

  12. Bamoulid L, Maurette M T, Caro D D, Guenbour A, Bachir A B, Aries A et al 2008 Surf. Coat. Technol. 202 5020

    CAS  Google Scholar 

  13. Dianran Y, Jining H, Jianjun W, Wanqi Q and Jing M 1997 Surf. Coat. Technol. 89 191

    Google Scholar 

  14. Sreenivas Rao K V, Tejaswini G C and Girisha K G 2018 Mater. Today: Proc. 5 24068

    CAS  Google Scholar 

  15. Benea L, Ponthiaux P and Wenger F 2011 Surf. Coat. Technol. 205 5379

    CAS  Google Scholar 

  16. Goral A, Nowak M, Berent K and Kania B 2014 J. Alloys Compd. 615 s406

    CAS  Google Scholar 

  17. Gao J and Suo J 2011 Appl. Surf. Sci. 257 9643

    CAS  Google Scholar 

  18. Saraloğlu-Güler E 2016 in Electrodeposition of composite materials A M M Mohamed (ed) (Croatia: IntechOpen) p 27

  19. Walsh F C and Leon C P 2014 Trans. IMF 92 83

    CAS  Google Scholar 

  20. Luo H, Leitch M, Behnamian Y, Ma Y, Zeng H and Luo J L 2015 Surf. Coat. Technol. 277 99

    CAS  Google Scholar 

  21. Abdel-Aal A, Zaki Z I and Abdel-Hamid Z 2007 Mater. Sci. Eng. A 447 87

    Google Scholar 

  22. Sheu H H, Huang P Ch, Tsai L Ch and Hou K H 2013 Surf. Coat. Technol. 235 529

    CAS  Google Scholar 

  23. Hu R, Su Y, Liu Y, Liu H, Chen Y, Cao Ch et al 2018 Nanoscale Res. Lett. 13 198

    Google Scholar 

  24. Gadhari P and Sahoo P 2017 Silicon 9 761

    CAS  Google Scholar 

  25. Momenzadeh M and Sanjabi S 2012 Mater. Corros. 63 614

    CAS  Google Scholar 

  26. Shoeib M A, Kamel M M, Rashwan S M and Hafez O M 2015 Surf. Interface Anal. 47 672

    CAS  Google Scholar 

  27. Subakova I, Petukhov I and Medvedeva N 2015 Mater. Manuf. Process. 30 766

    CAS  Google Scholar 

  28. Ranganatha S, Venkatesha T V and Vathsala K 2010 Appl. Surf. Sci. 256 7377

    CAS  Google Scholar 

  29. Song L, Wang Y, Lin W and Liu Q 2008 Surf. Coat. Technol. 202 5146

    CAS  Google Scholar 

  30. Novakovic J, Vassiliou P, Samara K and Argyropoulos Th 2006 Surf. Coat. Technol. 201 895

    CAS  Google Scholar 

  31. Saied Sh, Mekkaoui A, Belahssen O and Chala A 2017 Acta Metall. Slov. 23 9193

    Google Scholar 

  32. Gul H, Kılıc F, Aslan S, Alp A and Akbulut H 2009 Wear 267 976

    Google Scholar 

  33. Szczygieł B and Kołodziej M 2005 Trans. Inst. Met. Finish. 83 181

    Google Scholar 

  34. Julka S, Ansari M I and Thakur D G 2016 J. Mar. Sci. Appl. 15 484

    Google Scholar 

  35. Rudnik E, Burzyńska L, Dolasiński L and Misiak M 2010 Appl. Surf. Sci. 256 7414

    CAS  Google Scholar 

  36. Baghery P, Farzam M, Mousavi A and Hosseini M 2010 Surf. Coat. Technol. 204 3804

    CAS  Google Scholar 

  37. Gül H, Kılıç F, Uysal M, Aslan S, Alp A and Akbulut H 2012 Appl. Surf. Sci. 258 4260

    Google Scholar 

  38. Wang Y, Zhou Q, Li K, Zhong Q and Bui Q B 2015 Ceram. Int. 41 79

    Google Scholar 

  39. Holmberg K and Matthews A (eds) 2009 Coating tribology properties, techniques and applications in surface engineering: tribology series (the Netherlands: Elsevier)

  40. Lee H K, Lee H Y and Jeon J M 2007 Surf. Coat. Technol. 201 4711

    CAS  Google Scholar 

  41. Alizadeh M, Mirak M, Salahinejad E, Ghaffari M, Amini R and Roosta A 2014 J. Alloys Compd. 611 161

    CAS  Google Scholar 

  42. Bicelli L P, Bozzini B, Mele C and Urzo L D 2008 Int. J. Electrochem. Sci. 3 356

    CAS  Google Scholar 

  43. Pradhan A K and Das S 2014 J. Alloys Compd. 590 294

    CAS  Google Scholar 

  44. Duan H, Yan C and Wang F 2007 Electrochim. Acta 52 3785

    CAS  Google Scholar 

  45. Chandra R, Vijaya A and Sharma R 2006 Synth. React. Inorg. Met.-Org. Chem. 36 493

    Google Scholar 

  46. Aal A A 2008 Mater. Sci. Eng. A 474 181

    Google Scholar 

  47. Wang Y, Wang Sh J, Shu X, Gao W, Lu W and Yan B 2014 J. Alloys Compd. 617 472

    CAS  Google Scholar 

  48. Hajialifini M and Amadeh A 2013 Trans. Nonferrous Met. Soc. China 23 2914

    Google Scholar 

  49. Stojak J L and Talbot J B 2001 J. Appl. Electrochem. 31 559

    CAS  Google Scholar 

  50. Sadeghi A, Khosroshahi R and Sadeghian Z 2011 J. Surf. Invest. 5 186

    CAS  Google Scholar 

  51. Novakovic J and Vassiliou P 2009 Electrochim. Acta 54 2499

    CAS  Google Scholar 

  52. Cai C, Zhu X B, Zheng G Q, Yuan Y N, Huang X Q, Cao F H et al 2011 Surf. Coat. Technol. 205 3448

  53. Zhang S, Li Q, Yang X, Zhong X, Dai Y and Luo F 2010 Mater. Charact. 61 269

    CAS  Google Scholar 

  54. Liu X, Xiong J, Lv Y and Zuo Y 2009 Prog. Org. Coat. 64 497

    CAS  Google Scholar 

  55. Salahinejad E, Hadianfard M J, Macdonald D D, Sharifi-Asl S, Mozafari M, Walker K J et al 2013 J. Biomed. Nanotechnol. 9 1327

    CAS  Google Scholar 

  56. Salahinejad E, Hadianfard M J, Macdonald D D, Sharifi-Asl S, Mozafari M, Walker K J et al 2013 PLoS One 8 1

    Google Scholar 

  57. Zhang X, Wang F and Du Y 2007 Surf. Coat. Technol. 201 7241

    CAS  Google Scholar 

  58. Wang H, Zhang R, Yuan Z, Shu X, Liu E and Han Z 2015 Ceram. Int. 41 11844

    CAS  Google Scholar 

  59. Mohajeri S, Dolati A and Ghorbani M 2015 Surf. Coat. Technol. 262 173

    CAS  Google Scholar 

  60. Dehnavi V, Shoesmith D W, Luan B L, Yari M, Liu X Y and Rohani S 2015 Mater. Chem. Phys. 161 49

    CAS  Google Scholar 

  61. Sreekanth D, Rameshbabu N, Venkateswarlu K, Subrahmanyam C, Rama Krishna L and Prasad Rao K 2013 Surf. Coat. Technol. 222 31

    CAS  Google Scholar 

  62. Pezzato L, Brunelli K and Dabalà M 2016 Surf. Interface Anal. 48 729

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Mohsenifar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenifar, F., Ebrahimifar, H. Effect of titanium oxide ceramic particles concentration on microstructure and corrosion behaviour of \(\text {Ni}\)\(\text {P}\)\(\text {Al}_{{2}}\text {O}_{{3}}\)\(\text {TiO}_{{2}}\) composite coating. Bull Mater Sci 43, 99 (2020). https://doi.org/10.1007/s12034-020-2068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2068-x

Keywords

Navigation