Skip to main content

Advertisement

Log in

On the Synthesis and Characterization of Polylactic Acid, Polyhydroxyalkanoate, Cellulose Acetate, and Their Engineered Blends by Solvent Casting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, we report the synthesis of polylactic acid (PLA), polyhydroxyalkanoate (PHA), cellulose acetate (CA), and their binary and ternary blends by solvent casting. PLA, PHA, and CA had tensile strengths of ~ 59.4, ~ 17.4 and ~ 23.9 MPa, respectively. Differential scanning calorimetry (DSC) analysis showed that binary blends of PLA and PHA are immiscible in each other. During mechanical testing, 50 PHA–50 PLA showed mild enhancement and had a tensile strength of ~ 37.8 MPa as compared to 75 PLA–25 PHA and 25 PLA–75 PHA, which had tensile strengths of ~ 31.2 and ~ 22.9 MPa, respectively. This may be due to the formation of crystallized PHA in PLA matrix, which was further supported by the DSC results and analysis of fractured surface of 50 PHA–50 PLA. The addition of 24, 49, 74, and 89.5 vol.% CA in the PHA matrix improved the tensile strength to ~ 25.8, ~ 25.9, ~ 44.9, and ~ 42.4 MPa, respectively. Based on DSC results, it is hypothesized that the strength enhancement is due to synergistic effect of crystallization of PHA and plasticizing effect of CA additions. The addition of CA in PLA caused severe demixing, and the strength of PLA matrix reduced to ~ 25.8 and ~ 21.4 MPa after the additions of 24 and 49 vol.% CA in PLA matrix, respectively. In ternary blends, the addition of 5 and 19 vol.% CA degraded the strength of PHA–PLA to ~ 22.6 and ~ 21.8 MPa, respectively. However, after the addition of higher concentrations of CA, for example 32, 59, and 79 vol.% CA additions in PHA–PLA matrix, the strength improved to ~ 32.9, ~ 39.3, and ~ 32.1 MPa, respectively. The enhancement in strength can be explained by the increase in amorphous nature of these blends, which was further supported by the DSC results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. “What is a circular economy”, Ellen Macarthur Foundation. https://www.ellenmacarthurfoundation.org/circular-economy/concept. Accessed 5 Nov 2019

  2. “New Plastics Economy”, Ellen Macarthur Foundation. https://www.ellenmacarthurfoundation.org/our-work/activities/new-plastics-economy. Accessed 5 Nov 2019

  3. “Rethinking the future of plastics”, Ellen Macarthur Foundation. https://www.newplasticseconomy.org/about/publications/report-2016. Accessed 5 Nov 2019

  4. M. Brodin, M. Vallejos, M.T. Opedal, M.C. Area, and G. Chinga-Carrasco, Lignocellulosics as Sustainable Resources for Production of Bioplastics—A Review, J. Clean. Prod., 2017, 162, p 646–664

    Article  CAS  Google Scholar 

  5. O. Avinc and A. Khoddami, Overview of Poly(Lactic Acid) (PLA) Fibre, Fibre Chem., 2009, 41, p 68–78

    Article  Google Scholar 

  6. S. Farah, D.G. Anderson, and R. Langer, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review, Adv. Drug Deliv. Rev., 2016, 107, p 367–392

    Article  CAS  Google Scholar 

  7. R.E. Drumright, P.R. Gruber, and D.E. Henton, Polylactic Acid Technology, Adv. Mater., 2000, 12, p 1841–1846

    Article  CAS  Google Scholar 

  8. “4043D Technical Data Sheet”, https://www.natureworksllc.com/

  9. C.S.K. Reddy, R. Ghai, and V.K. Rashmi, Polyhydroxyalkanoates: An Overview, Biores. Technol., 2003, 87, p 137–146

    Article  CAS  Google Scholar 

  10. K. Dietrich, M.-J. Dumont, L.F. Del Rio, and V. Orsat, Producing PHAs in the Bioeconomy—Towards a Sustainable Bioplastic, Sustain. Prod. Consum., 2017, 9, p 58–70

    Article  Google Scholar 

  11. A. Sharma, M. Thakur, M. Bhattacharya, T. Mandal, S. Goswami, Commercial Application of Cellulose Nano-Composites—A Review. Biotechnol. Rep., 2019, 21, p e00316

    Article  Google Scholar 

  12. K. Khoshnevisan, H. Maleki, H. Samadian, S. Shahsavari, M.H. Sarrafzadeh, B. Larijani, F.A. Dorkoosh, V. Haghpanah, and M.R. Khorramizadeh, Cellulose Acetate Electrospun Nanofibers for Drug Delivery Systems: Applications and Recent Advances, Carbohydr. Polym., 2018, 198, p 131–141

    Article  CAS  Google Scholar 

  13. S. Fischer, K. Thummler, B. Volkert, K. Hettrich, I. Schmidit, and K. Fischer, Properties and Applications of Cellulose Acetate, Macromol. Symp., 2008, 262, p 89–96

    Article  CAS  Google Scholar 

  14. R. Geyer, J.R. Jambeck, and K.L. Law, Production, Use, and Fate of All Plastics Ever Made, Sci. Adv., 2017, 3, p e1700782

    Article  Google Scholar 

  15. M. van den Oever, K. Molenveld, M. van der Zee, H. Bos, Number Wageningen “Bio-Based and Biodegradable Plastics—Facts and Figures”, Food & Biobased Research number 1722, ISBN-number 978-94-6343-121-7. (2017). https://doi.org/10.18174/408350

  16. Norwegian Environment Agency, Bio-Based and Biodegradable Plastics: An Assessment of the Value Chain for BioBased and Biodegradable Plastics in Norway, Project Number – 1446 (2018)

  17. M.P. Arrieta, M.D. Samper, M. Aldas, and J. López, On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications, Materials, 2017, 10, p 1008. https://doi.org/10.3390/ma10091008

    Article  CAS  Google Scholar 

  18. J. Sun, J. Shen, S. Chen, M.A. Cooper, F. Hongbo, W. Daming, and Z. Yang, Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends, Polymers, 2018, 10, p 505. https://doi.org/10.3390/polym10050505

    Article  CAS  Google Scholar 

  19. E. González, L.M. Shepherd, L. Saunders, and M.W. Frey, Surface Functional Poly(lactic Acid) Electrospun Nanofibers for Biosensor Applications, Materials, 2016, 9, p 47. https://doi.org/10.3390/ma9010047

    Article  CAS  Google Scholar 

  20. E.H. Backes, L. de N. Pires, L.C. Costa, F.R. Passador, and L.A. Pessan, Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites, J. Compos. Sci., 2019, 3, p 52. https://doi.org/10.3390/jcs3020052

    Article  CAS  Google Scholar 

  21. E. Blumm and A.J. Owen, Miscibility, Crystallization and Melting of Poly(3 = hydroxybutyrate)/Poly(L-Lactide) Blends, Polymer, 1995, 36, p 4077–4081

    Article  Google Scholar 

  22. M. Zhang and N.L. Thomas, Blending Polylactic Acid with Polyhydroxybutyrate: The Effect on Thermal, Mechanical, and Biodegradation Properties, Adv. Polym. Technol., 2011, 30(2), p 67–79

    Article  Google Scholar 

  23. I. Burzic, C. Pretschuh, D. Kaineder, G. Eder, J. Smilek, J. Masilko, and W. Kateryna, Impact Modification of PLA Using Biobased Biodegradable PHA Biopolymers, Eur. Polym. J., 2019, 114, p 32–38

    Article  CAS  Google Scholar 

  24. P.N. Tri, S. Domenek, A. Guinault, and C. Sollogoub, Crystallization Behavior of Poly(Lactide)/Poly(β-Hydroxybutyrate)/Talc Composites, J. Appl. Polym. Sci., 2013, 129, p 3355–3365

    Article  CAS  Google Scholar 

  25. I. Janigová, I. Lacík, and I. Chodák, Thermal Degradation of Plasticized poly(3-hydroxybutyrate) Investigated by DSC, Polym. Degrad. Stab., 2002, 77, p 35–41

    Article  Google Scholar 

  26. P. Zugenmaier, Characterization and Physical Properties of Cellulose Acetates, Macromol. Symp., 2004, 208, p 81–166

    Article  CAS  Google Scholar 

  27. C.-S. Wu, Mechanical Properties, Biocompatibility, and Biodegradation of Cross-Linked Cellulose Acetate-Reinforced Polyester Composites, Carbohydr. Polym., 2014, 105, p 41–48

    Article  CAS  Google Scholar 

  28. H.P.S. Abdul Khalil, A.H. Bhat, and A.F. Ireana Yusra, Green Composites from Sustainable Cellulose Nanofibrils: A Review, Carbohydr. Polym., 2012, 87, p 963–979

    Article  CAS  Google Scholar 

  29. H.-M. Wang, Y.-T. Chou, C.-S. Wu, and J.-T. Yeh, Polyester/Cellulose Acetate Composites: Preparation, Characterization and Biocompatible, J. Appl. Polym. Sci., 2012, 126, p 242–251

    Article  Google Scholar 

  30. J. Zhang, K. Tashiro, H. Tsuji, and A.J. Domb, Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC, Macromolecules, 2008, 41, p 1352–1357

    Article  CAS  Google Scholar 

  31. M.A. Abdelwahab, A. Flynn, B.-S. Chiou, S. Imam, W. Orts, and E. Chiellini, Thermal, Mechanical and Morphological Characterization of Plasticized PLA-PHB Blends, Polym. Degrad. Stab., 2012, 97, p 1822–1828

    Article  CAS  Google Scholar 

  32. M.P. Arrieta, E. Fortunati, F. Dominici, J. López, and J.M. Kenny, Bionanocomposite Films Based on Plasticized PLA–PHB/Cellulose Nanocrystal Blends, Carbohydr. Polym., 2015, 121, p 265–275

    Article  CAS  Google Scholar 

  33. M.P. Arrieta, J. López, A. Hernández, and E. Rayón, Ternary PLA–PHB–Limonene Blends Intended for Biodegradable Food Packaging Applications, Eur. Polym. J., 2014, 50, p 255–270

    Article  CAS  Google Scholar 

  34. K. Zhang, A.K. Mohanty, and M. Misra, Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties, ACS Appl. Mater. Interfaces, 2012, 4, p 3091–3101

    Article  CAS  Google Scholar 

  35. W.K. Son, J.H. Youk, T.S. Lee, and W.H. Park, Electrospinning of Ultrafine Cellulose Acetate Fibers: Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers, J. Polym. Sci., Part B: Polym. Phys., 2004, 42, p 5–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surojit Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Aldam, S., Dey, M., Javaid, S. et al. On the Synthesis and Characterization of Polylactic Acid, Polyhydroxyalkanoate, Cellulose Acetate, and Their Engineered Blends by Solvent Casting. J. of Materi Eng and Perform 29, 5542–5556 (2020). https://doi.org/10.1007/s11665-020-04594-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04594-3

Keywords

Navigation