Skip to main content
Log in

One-Step Eco-Friendly Synthesis of Ag-Reduced Graphene Oxide Nanocomposites for Antibiofilm Application

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study focuses on the synthesis and characterization of Ag nanoparticle-decorated reduced graphene oxide (RGO) nanocomposites (Ag-RGO), which were obtained via a facile, green and efficient one-pot hydrothermal method. TEM results showed that the silver nanoparticles (20-50 nm) were uniformly attached onto RGO sheets with C/O ratio of 6.4 and 80% of sp2 carbon, obtained from XPS analysis. Compared with GO and RGO, the prepared Ag-RGO composites possessed significant antibacterial property; the minimum inhibitory concentration of Ag-RGO was just 31.25 μg/mL against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli. Particularly, the Ag-RGO nanocomposites released more Ag+ in acidic condition, promoting the produce of reactive oxygen species, which are acknowledged as disruption to the membrane integrity of the bacteria. Moreover, the Ag-RGO nanocomposites effectively dispersed and eliminated the maturely formed biofilm, showing superior advantages in responding to public health threats posed by biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.W. Costerton, P.S. Stewart, and E.P. Greenberg, Bacterial Biofilms: a Common Cause of Persistent Infections, Science284, 1318–1322 (1999)

    CAS  Google Scholar 

  2. G.A. Gomes, G.L. da Costa, and A.B.-H.S. Figueiredo, Synthesis of Ferrite Nanoparticles Cu1xAgxFe2O4 and Evaluation of Potential Antibacterial Activity, J. Mater. Res. Technol.3, 381–386 (2018)

    Google Scholar 

  3. K.E. Jones, N.G. Patel, M.A. Levy, A. Storeygard, D. Balk, J.L. Gittleman, and P. Daszak, Global Trends in Emerging Infectious Diseases, Nature451, 990–993 (2008)

    CAS  Google Scholar 

  4. G. Taubes, The Bacteria Fight Back, Science321, 356–361 (2008)

    CAS  Google Scholar 

  5. I. Sutherland, The Biofilm Matrix—An Immobilized But Dynamic Microbial Environment, Trends Microbiol. 9, 222–227 (2001)

    CAS  Google Scholar 

  6. S.B. Levy and B. Marshall, Antibacterial Resistance Worldwide: Causes, Challenges and Responses, Nat. Med.10, S122–S129 (2004)

    CAS  Google Scholar 

  7. B. Vu, M. Chen, R. Crawford, and E.P. Ivanova, Bacterial Extracellular Polysaccharides Involved in Biofilm Formation, Molecules14, 2535–2554 (2009)

    CAS  Google Scholar 

  8. A.M. Jastrzebska, E. Karwowska, T. Wojciechowski, W. Ziemkowska, A. Rozmysłowska, L. Chlubny, and A. Olszyna, The Atomic Structure of Ti2C and Ti3C2 MXenes is Responsible for Their Antibacterial Activity Toward E. coli Bacteria, J. Mater. Eng. Perform.28, 1272–1277 (2019)

    CAS  Google Scholar 

  9. M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In Vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-xAg Nanocomposites Synthesized by Mechanical Alloying for Implant Applications, J. Mater. Eng. Perform.28, 1441–1455 (2019)

    CAS  Google Scholar 

  10. M.K. Ibrahim, E. Hamzah, and S.N. Saud, Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 025, 05 and 15) SMAs, J. Mater. Eng. Perform.28, 382–393 (2019)

    CAS  Google Scholar 

  11. L. Liu, H. Bai, J. Liu, and D.D. Sun, Multifunctional Graphene Oxide-TiO2-Ag Nanocomposites for High Performance Water Disinfection and Decontamination Under Solar Irradiation, J. Hazard. Mater.261, 214–223 (2013)

    CAS  Google Scholar 

  12. A.F.D. Faria, D.S.T. Martinez, S.M.M. Meira, A.C.M.D. Moraes, A. Brandelli, A.G.S. Filho, and O.L. Alves, Anti-Adhesion and Antibacterial Activity of Silver Nanoparticles Supported on Graphene Oxide Sheets, Colloids Surf. B.113, 115–124 (2014)

    Google Scholar 

  13. H. Kim, D. Lee, J. Kim, T. Kim, and W.J. Kim, Photothermally Triggered Cytosolic Drug Delivery via Endosome Disruption Using a Functionalized Reduced Graphene Oxide, ACS Nano7, 6735–6746 (2013)

    CAS  Google Scholar 

  14. J. Shen, T. Li, M. Shi, N. Li, and M. Ye, Polyelectrolyte-Assisted One-Step Hydrothermal Synthesis of Ag-Reduced Graphene Oxide Composite and its Antibacterial Properties, Mater. Sci. Eng. C Mater.32, 2042–2047 (2012)

    CAS  Google Scholar 

  15. Y. Han, Z. Luo, L. Yuwen, J. Tian, X. Zhu, and L. Wang, Synthesis of Silver Nanoparticles on Reduced Graphene Oxide Under Microwave Irradiation with Starch as an Ideal Reductant and Stabilizer, Appl. Surf. Sci.266, 188–193 (2013)

    CAS  Google Scholar 

  16. C.H. Deng, J.L. Gong, G.M. Zeng, C.G. Niu, Q.Y. Niu, W. Zhang, and H.Y. Liu, Inactivation Performance and Mechanism of Escherichia Coli in Aqueous System Exposed to Iron Oxide Loaded Graphene Nanocomposites, J. Hazard. Mater.276, 66–76 (2014)

    CAS  Google Scholar 

  17. L. Mei, Z.T. Lu, W. Zhang, Z. Wu, X. Zhang, Y. Wang, Y. Luo, C. Li, and Y. Jia, Bioconjugated Nanoparticles for Attachment and Penetration into Pathogenic Bacteria, Biomaterials34, 10328–10337 (2013)

    CAS  Google Scholar 

  18. S.S. Chen, H. Xu, H.J. Xu, G.J. Yu, X.L. Gong, Q.L. Fang, K.C.F. Leung, S.H. Xuan, and Q.R. Xiong, A Facile Ultrasonication Assisted Method for Fe3O4@SiO2-Ag Nanospheres with Excellent Antibacterial Activity, Dalton. Trans.44, 9140–9148 (2015)

    CAS  Google Scholar 

  19. C. Levard, E.M. Hotze, G.V. Lowry, and G.E. Brown, Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity, Environ. Sci. Technol.46, 6900–6914 (2012)

    CAS  Google Scholar 

  20. M.V.D. Zande, R.J. Vandebriel, E.V. Doren, E. Krame, Z.H. Rivera, C.S. Serrano-Rojero, E.R. Gremmer, J. Mast, R.J.B. Peters, P.C.H. Hollman, P.J.M. Hendriksen, H.J.P. Marvin, A.A.C.M. Peijnenburg, and H. Bouwmeester, Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats After 28-day Oral Exposure, ACS Nano6, 7427–7442 (2012)

    Google Scholar 

  21. J.M. Peng, J.C. Lin, Z.Y. Chen, M.C. Wei, Y.X. Fu, S.S. Lu, D.S. Yu, and W. Zhao, Enhanced Antimicrobial Activities of Silver-Nanoparticle-Decorated Reduced Graphene Nanocomposites Against Oral Pathogens, Mater. Sci. Eng. C Mater.71, 10–16 (2017)

    CAS  Google Scholar 

  22. Z. Xiu, Q. Zhang, H.L. Puppala, V.L. Colvin, and P.J.J. Alvarez, Negligible Particle-Specific Antibacterial Activity of Silver Nano-particles, Nano Lett.12, 4271–4275 (2012)

    CAS  Google Scholar 

  23. H. Su, C.C. Chou, D.J. Hung, S.H. Lin, I.C. Pao, J.H. Lin, F.L. Huang, R.X. Dong, and J.J. Lin, The Disruption of Bacterial Membrane Integrity Through ROS Generation Induced by Nano-hybrids of Silver and Clay, Biomaterials30, 5979–5987 (2009)

    CAS  Google Scholar 

  24. X. Wang, J. Wu, P. Li, L. Wang, J. Zhou, G. Zhang, X. Li, B. Hu, and X. Xing, Microenvironment-Responsive Magnetic Nanocomposites Based on Silver Nanoparticles/Gentamicin for Enhanced Biofilm Disruption by Magnetic Field, ACS Appl. Mater. Inter.10, 34905–34915 (2018)

    CAS  Google Scholar 

  25. H. Ji, H. Sun, and X. Qu, Antibacterial Applications of Graphene-Based Nanomaterials: Recent Achievements and Challenges, Adv. Drug Deliv. Rev.105, 176–189 (2016)

    CAS  Google Scholar 

  26. B. Qi, Z. Dun, and Q. Peng, Synthesis and Characterization of Silver Nanoparticle and Graphene Oxide Nanosheet Composites as A Bactericidal Agent for Water Disinfection, J. Colloid Interf. Sci.360, 463–470 (2011)

    Google Scholar 

  27. B. Pant, P. Pokharel, A.P. Tiwari, P.S. Saud, M. Park, Z.K. Ghouri, S. Choi, S.J. Park, and H.Y. Kim, Characterization and Antibacterial Properties of Aminophenol Grafted and Ag NPs Decorated Graphene Nanocomposites, Ceram. Int.41, 5656–5662 (2015)

    CAS  Google Scholar 

  28. B. Fan, Y. Li, F. Han, T. Su, J. Li, and R. Zhang, Synthesis of Ag/rGO Composite Materials with Antibacterial Activities Using Facile and Rapid Microwave-Assisted Green Route, J. Mater. Sci. Mater. Med.29, 69 (2018)

    Google Scholar 

  29. M. Sedki, M.B. Mohamed, M. Fawzy, D.A. Abdelrehim, and M.M.S.A. Abdel-Mottaleb, Phytosynthesis of Silver-Reduced Graphene Oxide (Ag-RGO) Nanocomposite with an Enhanced Antibacterial Effect Using Potamogeton Pectinatus Extract, RSC Adv.5, 17358–17365 (2015)

    CAS  Google Scholar 

  30. N. Wang, B. Hu, M.L. Chen, and J.H. Wang, Polyethylenimine Mediated Silver Nanoparticle-Decorated Magnetic Graphene as a Promising Photothermal Antibacterial Agent, Nanotechnology26, 195703 (2015)

    Google Scholar 

  31. M. Moghayedi, E.K. Goharshadi, K. Ghazvini, H. Ahmadzadeh, L. Ranjbaran, R. Masoudi, and R. Ludwig, Kinetics and Mechanism of Antibacterial Activity and Cytotoxicity of Ag-RGO Nanocomposite, Colloid. Surf. B.159, 366–374 (2017)

    CAS  Google Scholar 

  32. X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, Deoxygenation of Exfoliated Graphite Oxide Under Alkaline Conditions: A Green Route to Graphene Preparation, Adv. Mater.20, 4490–4493 (2008)

    CAS  Google Scholar 

  33. J. Tian, S. Liu, Y. Zhang, H. Li, L. Wang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, and X. Sun, Environmentally Friendly, One-Pot Synthesis of Ag Nanoparticle-Decorated Reduced Graphene Oxide Composites and their Application to Photocurrent Generation, Inorgan. Chem.51, 4742–4746 (2012)

    CAS  Google Scholar 

  34. S. Khorrami, Z. Abdollahi, G. Eshaghi, A. Khosravi, E. Bidram, and A. Zarrabi, An Improved Method for Fabrication of Ag-GO Nanocomposite with Controlled Anti-cancer and Anti-bacterial Behavior; A Comparative Study, Sci. Rep.9, 9167 (2019)

    Google Scholar 

  35. M.K. Ibrahim, E. Hamzah, and S.N. Saud, Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 025, 05 and 15) SMAs, J. Mater. Eng. Perform.28, 382–393 (2019)

    CAS  Google Scholar 

  36. S. Wang, Y. Zhang, H.L. Ma, Q. Zhang, W. Xu, J. Peng, J. Li, Z.Z. Yu, and M. Zhai, Ionic-Liquid-Assisted Facile Synthesis of Silver Nanoparticle-Reduced, Graphene Oxide Hybrids by Gamma Irradiation, Carbon55, 245–252 (2013)

    CAS  Google Scholar 

  37. T.A. Pham, B.C. Choi, K.T. Lim, and Y.T. Jeong, A Simple Approach for Immobilization of Gold Nanoparticles on Graphene Oxide Sheets by Covalent Bonding, Appl. Surf. Sci.257, 3350–3357 (2011)

    CAS  Google Scholar 

  38. Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu, and J. Gao, One Pot Preparation of Reduced Graphene Oxide (RGO) or Au (Ag) Nanoparticle-RGO Hybrids Using Chitosan as a Reducing and Stabilizing Agent and their Use in Methanol Electrooxidation, Carbon50, 2513–2523 (2012)

    CAS  Google Scholar 

  39. F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys.53, 1126–1130 (1970)

    CAS  Google Scholar 

  40. M.S. Haider, G.N. Shao, S.M. Imran, S.S. Park, N. Abbas, M.S. Tahir, M. Hussain, W. Bae, and H.T. Kim, Aminated Polyethersulfone-Silver Nanoparticles (AgNPs-APES) Composite Membranes with Controlled Silver Ion Release for Antibacterial and Water Treatment Applications, Mater. Sci. Eng. C Mater.62, 732–745 (2016)

    CAS  Google Scholar 

  41. J.M. Peng, J.C. Lin, Z.Y. Chen, M.C. Wei, Y.X. Fu, S.S. Lu, D.S. Yu, and W. Zhao, Enhanced Antimicrobial Activities of Silver-Nanoparticle-Decorated Reduced Graphene Nanocomposites Against Oral Pathogens, Mater. Sci. Eng. C Mater.71, 10–16 (2017)

    CAS  Google Scholar 

  42. S.S. Chen, H. Xu, H.J. Xu, G.J. Yu, X.L. Gong, Q.L. Fang, K.C.F. Leung, S.H. Xuan, and Q.R. Xiong, A Facile Ultrasonication Assisted Method for Fe3O4@SiO2-Ag Nanospheres with Excellent Antibacterial Activity, Dalton. Trans.44, 9140–9148 (2015)

    CAS  Google Scholar 

  43. Q. Xu, X. Li, Y. Jin, L. Sun, X. Ding, L. Liang, L. Wang, K. Nan, J. Ji, H. Chen, and B. Wang, Bacterial Self-Defense Antibiotics Release from Organic-Inorganic Hybrid Multilayer Films for Long-Term Anti-adhesion and Biofilm Inhibition Properties, Nanoscale9, 19245–19254 (2017)

    CAS  Google Scholar 

  44. H.L. Su, C.C. Chou, D.J. Hung, S.H. Lin, I.C. Pao, J.H. Lin, F.L. Huang, R.X. Dong, and J.J. Lin, The Disruption of Bacterial Membrane Integrity Through ROS Generation Induced by Nano-hybrids of Silver and Clay, Biomaterials30, 5979–5987 (2009)

    CAS  Google Scholar 

  45. G. Wang, W. Jin, A.M. Qasim, A. Gao, X. Peng, W. Li, H. Feng, and P.K. Chu, Antibacterial Effects of Titanium Embedded with Silver Nanoparticles Based on Electron-Transfer-Induced Reactive Oxygen Species, Biomaterials124, 25–34 (2017)

    CAS  Google Scholar 

  46. S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroglu, K. Vig, V.A. Dennis, and S.R. Singh, Functionalized Carbon Nanotubes: Biomedical Applications, Int. J. Nanomed.7, 5361–5374 (2012)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the National Nature Science Foundation of China (No. 51902141, 51872129), the Natural Science Foundation of Jiangsu Province (No. BK20191038, BK20181041), the Talent Introduction Project of Jiangsu University of Technology (No. KYY17021), the Social Development Project of Jiangsu Province (No. BE2016657) and the Major Project of Natural Science Research in Universities of Jiangsu Province (No. 16KJA430007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhu, B., Zhao, Y. et al. One-Step Eco-Friendly Synthesis of Ag-Reduced Graphene Oxide Nanocomposites for Antibiofilm Application. J. of Materi Eng and Perform 29, 2551–2559 (2020). https://doi.org/10.1007/s11665-020-04742-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04742-9

Keywords

Navigation