Skip to main content
Log in

Precipitation Hardening and Corrosion Behavior of Friction Stir Welded A6005-TiB2 Nanocomposite

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Precipitation hardening and corrosion behavior of a friction stir welding (FSW) based on the aluminum alloy A6005 reinforced with TiB2 nanoparticles have been studied. Mechanical alloying (MA) and hot extrusion techniques have been employed as processing route followed by FSW. Samples characterization has been performed by DSC and TEM, and precipitation strengthening of the bulk samples and the FSW joint has been evaluated by micro-hardness tests after T6 thermal treatment. TEM characterization revealed the presence of Mg–Si hardening phases, mainly of β′ phase, and dispersoids of α-Al(FeMnCr)Si into the aluminum matrix. The results revealed that samples subjected to MA had less susceptibility to T6 thermal treatment and that the presence of nano-TiB2 reinforcement accelerates aging time. In addition, electrochemical tests based on polarization tests have been performed in 3.5% NaCl solution to assess the effect of FSW process on corrosion behavior. The FSW joint had worse corrosion behavior since the passive Al2O3 film was not generated on the weld zone. SEM–EDS analysis revealed that pits nucleated mainly in sites with a higher presence of Fe contaminant which acts cathodically with respect to the aluminum matrix, producing galvanic corrosion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Wagih, Mechanical properties of Al–Mg/Al2O3 nanocomposite powder produced by mechanical alloying. Adv. Powder Technol. 26, 253–258 (2015). https://doi.org/10.1016/j.apt.2014.10.005

    Article  CAS  Google Scholar 

  2. I. Dinaharan, N. Murugan, Optimization of friction stir welding process to maximize tensile strength of AA6061/ZrB 2 in-situ composite butt joints. Met. Mater. Int. 18, 135–142 (2012). https://doi.org/10.1007/s12540-012-0016-z

    Article  CAS  Google Scholar 

  3. A.R. Othman, A. Sardarinejad, A.K. Masrom, Effect of milling parameters on mechanical alloying of aluminum powders. Int. J. Adv. Manuf. Technol. 76, 1319–1332 (2014). https://doi.org/10.1007/s00170-014-6283-8

    Article  Google Scholar 

  4. I. Feijoo, M. Cabeza, P. Merino et al., Estimation of crystallite size and lattice strain in nano-sized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening. Powder Technol. 343, 19–28 (2019). https://doi.org/10.1016/j.powtec.2018.11.010

    Article  CAS  Google Scholar 

  5. N. Abu-Warda, M.V. Utrilla, M.D. Escalera et al., The effect of TiB2content on the properties of AA6005/TiB2 nanocomposites fabricated by mechanical alloying method. Powder Technol. (2018). https://doi.org/10.1016/j.powtec.2018.01.028

    Article  Google Scholar 

  6. T. Singh, S.K. Tiwari, D.K. Shukla, Mechanical and microstructural characterization of friction stir welded AA6061-T6 joints reinforced with nano-sized particles. Mater. Charact. 159, 110047 (2020). https://doi.org/10.1016/j.matchar.2019.110047

    Article  CAS  Google Scholar 

  7. S. Babu, K. Elangovan, V. Balasubramanian, M. Balasubramanian, Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints. Met. Mater. Int. 15, 321–330 (2009). https://doi.org/10.1007/s12540-009-0321-3

    Article  CAS  Google Scholar 

  8. L. Wan, Y. Huang, W. Guo et al., Mechanical properties and microstructure of 6082-T6 aluminum alloy joints by self-support friction stir welding. J. Mater. Sci. Technol. 30, 1243–1250 (2014). https://doi.org/10.1016/j.jmst.2014.04.009

    Article  CAS  Google Scholar 

  9. J. Dong, D. Zhang, W. Zhang et al., Microstructure and properties of underwater friction stir-welded 7003-T4/6060-T4 aluminum alloys. J. Mater. Sci. 54, 11254–11262 (2019). https://doi.org/10.1007/s10853-019-03676-5

    Article  CAS  Google Scholar 

  10. T. Chen, Process parameters study on FSW joint of dissimilar metals for aluminum-steel. J. Mater. Sci. 44, 2573–2580 (2009). https://doi.org/10.1007/s10853-009-3336-8

    Article  CAS  Google Scholar 

  11. Y. Birol, Precipitation during homogenization cooling in AlMgSi alloys. Trans. Nonferrous Met. Soc. China 23, 1875–1881 (2013). https://doi.org/10.1016/S1003-6326(13)62672-2

    Article  CAS  Google Scholar 

  12. W. Yang, S. Ji, Z. Li, M. Wang, Grain boundary precipitation induced by grain crystallographic misorientations in an extruded Al–Mg–Si–Cu alloy. J. Alloys Compd. 624, 27–30 (2015). https://doi.org/10.1016/j.jallcom.2014.10.206

    Article  CAS  Google Scholar 

  13. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893–3904 (1998). https://doi.org/10.1016/S1359-6454(98)00059-7

    Article  CAS  Google Scholar 

  14. A. Schiffl, S. Schwarz, G.R. Bourret et al., Secondary precipitation during homogenization of Al–Mg–Si alloys: influence on high temperature flow stress. Mater. Sci. Eng. A 687, 175–180 (2017). https://doi.org/10.1016/j.msea.2017.01.074

    Article  CAS  Google Scholar 

  15. P. Rodrigo, P. Poza, V. Utrilla, A. Ureña, Effect of reinforcement geometry on precipitation kinetics of powder metallurgy AA2009/SiC composites. J. Alloys Compd. 479, 451–456 (2009). https://doi.org/10.1016/j.jallcom.2008.12.114

    Article  CAS  Google Scholar 

  16. O.S. Salih, H. Ou, W. Sun, D.G. McCartney, A review of friction stir welding of aluminium matrix composites. Mater. Des. 86, 61–71 (2015). https://doi.org/10.1016/j.matdes.2015.07.071

    Article  CAS  Google Scholar 

  17. Y.C. Chen, J.C. Feng, H.J. Liu, Precipitate evolution in friction stir welding of 2219-T6 aluminum alloys. Mater. Charact. 60, 476–481 (2009). https://doi.org/10.1016/j.matchar.2008.12.002

    Article  CAS  Google Scholar 

  18. K. Elangovan, V. Balasubramanian, Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Mater. Charact. 59, 1168–1177 (2008). https://doi.org/10.1016/j.matchar.2007.09.006

    Article  CAS  Google Scholar 

  19. M. Navaser, M. Atapour, Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J. Mater. Sci. Technol. 33, 155–165 (2017). https://doi.org/10.1016/j.jmst.2016.07.008

    Article  CAS  Google Scholar 

  20. B. Seo, K. Hyun, S. Kwangsuk, Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel. Met. Mater. Int. (2018). https://doi.org/10.1007/s12540-018-0135-2

    Article  Google Scholar 

  21. S. Maggiolino, C. Schmid, Corrosion resistance in FSW and in MIG welding techniques of AA6XXX. J. Mater. Process. Technol. 197, 237–240 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.034

    Article  CAS  Google Scholar 

  22. N. Abu-Warda, M.D. López, M.D. Escalera-Rodríguez et al., Corrosion behavior of mechanically alloyed A6005 aluminum alloy composite reinforced with TiB2 nanoparticles. Mater. Corros. (2019). https://doi.org/10.1002/maco.201911174

    Article  Google Scholar 

  23. M. Cabeza, I. Feijoo, P. Merino et al., Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite. Powder Technol. 321, 31–43 (2017). https://doi.org/10.1016/j.powtec.2017.07.089

    Article  CAS  Google Scholar 

  24. Y. Weng, Z. Jia, L. Ding et al., Clustering behavior during natural aging and artificial aging in Al–Mg–Si alloys with different Ag and Cu addition. Mater. Sci. Eng. A 732, 273–283 (2018). https://doi.org/10.1016/j.msea.2018.07.018

    Article  CAS  Google Scholar 

  25. A. Serizawa, S. Hirosawa, T. Sato, Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al–Mg–Si alloy. Met. Mater Trans. A 39, 243–251 (2008)

    Article  Google Scholar 

  26. C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater. 49, 321–328 (2001). https://doi.org/10.1016/S1359-6454(00)00302-5

    Article  CAS  Google Scholar 

  27. Y. Birol, DSC analysis of the precipitation reaction in AA6005 alloy. J. Therm. Anal. Calorim. 93, 977–981 (2008). https://doi.org/10.1007/s10973-007-8686-3

    Article  CAS  Google Scholar 

  28. L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater. Sci. Eng. 283, 144–152 (2000)

    Article  Google Scholar 

  29. N. Bayat, T. Carlberg, M. Cieslar, In-situ study of phase transformations during homogenization of 6005 and 6082 Al alloys. J. Alloys Compd. 725, 504–509 (2017). https://doi.org/10.1016/j.jallcom.2017.07.149

    Article  CAS  Google Scholar 

  30. M. Couper, K. Strobel, J.F. Nie et al., Dispersoid phases in 6xxx series aluminium alloys. Mater. Sci. Forum 654–656, 926–929 (2010). https://doi.org/10.4028/www.scientific.net/msf.654-656.926

    Article  Google Scholar 

  31. K. Kalaiselvan, I. Dinaharan, N. Murugan, Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite. Mater. Des. 55, 176–182 (2014). https://doi.org/10.1016/j.matdes.2013.09.067

    Article  CAS  Google Scholar 

  32. X.G. Chen, M. da Silva, P. Gougeon, L. St-Georges, Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites. Mater. Sci. Eng. A 518, 174–184 (2009). https://doi.org/10.1016/j.msea.2009.04.052

    Article  CAS  Google Scholar 

  33. D. Wang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Achieving friction stir welded SiCp/Al–Cu–Mg composite joint of nearly equal strength to base material at high welding speed. Mater. Sci. Eng. A 589, 271–274 (2014). https://doi.org/10.1016/j.msea.2013.09.096

    Article  CAS  Google Scholar 

  34. D. Verdera, R. Fernández, F. Cioffi et al., Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement. Compos. Part A Appl. Sci. Manuf. 54, 117–123 (2013). https://doi.org/10.1016/j.compositesa.2013.07.011

    Article  CAS  Google Scholar 

  35. T. Singh, S.K. Tiwari, D.K. Shukla, Friction-stir welding of AA6061-T6: the effects of Al2O3 nano-particles addition. Results Mater. 1, 100005 (2019). https://doi.org/10.1016/j.rinma.2019.100005

    Article  Google Scholar 

Download references

Acknowledgements

This research has been conducted with the economic support of Ministerio de Economía y Competitividad (MAT2013-48166-C3-3-R) and Comunidad de Madrid (ADITIMAT-CM, S2018/NMT-4411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abu-warda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-warda, N., López, M.D., González, B. et al. Precipitation Hardening and Corrosion Behavior of Friction Stir Welded A6005-TiB2 Nanocomposite. Met. Mater. Int. 27, 2867–2878 (2021). https://doi.org/10.1007/s12540-020-00688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00688-8

Keywords

Navigation