Skip to main content
Log in

Mechanistic understanding of Cu-based bimetallic catalysts

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Copper has received extensive attention in the field of catalysis due to its rich natural reserves, low cost, and superior catalytic performance. Herein, we reviewed two modification mechanisms of co-catalyst on the coordination environment change of Cu-based catalysts: (1) change the electronic orbitals and geometric structure of Cu without any catalytic functions; (2) act as an additional active site with a certain catalytic function, as well as their catalytic mechanism in major reactions, including the hydrogenation to alcohols, dehydrogenation of alcohols, water gas shift reaction, reduction of nitrogenous compounds, electrocatalysis and others. The influencing mechanisms of different types of auxiliary metals on the structure-activity relationship of Cu-based catalysts in these reactions were especially summarized and discussed. The mechanistic understanding can provide significant guidance for the design and controllable synthesis of novel Cu-based catalysts used in many industrial reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

NPs:

Nanoparticles

CSNPs:

Core-shell nanoparticles

WGS:

Water gas shift

DFT:

Density functional theory

CNFs:

Carbon nanofibers

PROX:

Preferential oxidation reaction

GHR:

Glycerol hydrogenolysis reaction

1,2-PDO:

1,2-Propanediol

H2-TPR:

H2-temperature programmed reduction

IWI:

Incipient wetness impregnation

NH3-TPD:

NH3-temperature programmed desorption

CTH:

Catalytic transfer hydrogenation

APR:

Aqueous phase reforming

HR-TEM:

High resolution-transmission electron microscope

XPS:

X-ray photoelectron spectroscopy

EL:

Ethyl levulinate

WHSV:

Weight hourly space velocity

TOF:

Turnover frequency

MA:

Mesoporous alumina

GHSV:

Gas hourly space velocity

LHSV:

Liquid hour space velocity

CNT:

Carbon nanotube

GVL:

γ-Valerolactone

1,4-PeD:

1,4-pentanediol

GBL:

γ-Butyrolactone

STY:

Space time yield

DRIFTS:

Diffused reflectance infrared fourier transform spectroscopy

FTs:

Fischer-Tropsch synthesis

STM:

Scanning tunneling microscope

LDHs:

Layered double hydroxides

CFs:

Carbon fibers

BTC:

1,3,5-Benzenetricarboxylic acid

DBA:

3,3-Dimethyl-1-butanal

ACF:

Activated carbon fibrous

XRD:

X-ray diffraction

DBO:

3,3-Dimethyl-1-butanol

MWCNT:

Multi-walled carbon nanotube

OWGS:

Oxygen-assisted-water gas shift

DP:

Deposition-precipitation

WSV:

Water space velocity

SCR:

Selective catalytic reduction

OMC:

Ordered mesoporous carbons

DFS:

Depleted fullerene soot

TNTs:

Titanate nanotubes

SS:

Stainless steel

4-NP:

4-Nitrophenol

NZVI:

Nanoscale zerovalent iron

AC:

Activated carbon

AC1:

Oxidation of AC in liquid phase with HNO3

AC2:

Heat treatment of AC1 during 1 h at 700°C under N2

AC3:

Heat treatment of AC1 during 1 h at 700°C under H2 flow

CNT1:

Carbon nanotubes sample Nanocyl-3100

CNT2:

Carbon nanotubes treated in an acid bath of H2SO4 (50 vol.%)

CXG:

Carbon xerogel

P-DB:

p-Dinitrobenzene

4-AP:

4-Aminophenol

4-NA:

4-Nitroaniline

4-BTN:

4-Bromonitrobenzene

2-NP:

2-Nitrophenol

GP:

Ginger rhizome powder

NMA:

3-Nitro-4-methoxy-acetylaniline

AAPTMS:

N-(2 amino ethyl)-3-amino propyl trimethoxy silane

GO:

Graphene oxide

CA:

Cellulose acetate

3DG:

Three-dimensional graphene

ORR:

Oxygen reduction reaction

EXAFS:

Extended x-ray absorption fine structure

NPCC:

Nanoporous carbon composite

CB:

Conduction band

References

  1. Giraldo L, Camargo G, Tirano J, Moreno-Pirajan J C. Synthesis of fatty alcohols from oil palm using a catalyst of Ni–Cu supported onto zeolite. E-Journal of Chemistry, 2010, 7(4): 1138–1147

    Article  CAS  Google Scholar 

  2. Huang Y, Ariga H, Zheng X, Duan X, Takakusagi S, Asakura K, Yuan Y. Silver-modulated SiO2-supported copper catalysts for selective hydrogenation of dimethyl oxalate to ethylene glycol. Journal of Catalysis, 2013, 307: 74–83

    Article  CAS  Google Scholar 

  3. Jia Y, Liu H. Selective hydrogenolysis of sorbitol to ethylene glycol and propylene glycol on ZrO2-supported bimetallic Pd–Cu catalysts. Chinese Journal of Catalysis, 2015, 36(9): 1552–1559

    Article  CAS  Google Scholar 

  4. Jia T, Cao P, Wang B, Lou Y, Yin X, Wang M, Liao J A. Cu/Pd cooperative catalysis for enantioselective allylboration of alkenes. Journal of the American Chemical Society, 2015, 137(43): 13760–13763

    Article  CAS  PubMed  Google Scholar 

  5. Shimizu K, Shimura K, Nishimura M, Satsuma A. Silver clusterpromoted heterogeneous copper catalyst for N-alkylation of amines with alcohols. RSC Advances, 2011, 1(7): 1310–1317

    Article  CAS  Google Scholar 

  6. Su J, Hua R. One-pot approach to 4-Vinyl-1,2,3-Triazoles by cycloaddition of azides with propargyl alcohols catalyzed by Cu(I)/ Ru(III)/TFA. Current Organic Synthesis, 2012, 9(6): 898–902

    Article  CAS  Google Scholar 

  7. Tang J, Biafora A, Goossen L J. Catalytic decarboxylative crosscoupling of aryl chlorides and benzoates without activating ortho substituents. Angewandte Chemie International Edition, 2015, 54 (44): 13130–13133

    Article  CAS  PubMed  Google Scholar 

  8. Wolfbeisser A, Kovacs G, Kozlov S M, Foettinger K, Bernardi J, Kloetzer B, Neyman K M, Rupprechter G. Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and density functional study. Catalysis Today, 2017, 283: 134–143

    Article  CAS  Google Scholar 

  9. Yan L, Tian S, Zhou J, Yuan X. Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al2O3 catalyst: Parameters and conditions. Frontiers of Environmental Science & Engineering, 2016, 10(6): 141–148

    Article  CAS  Google Scholar 

  10. Wang Y, Sang S, Zhu W, Gao L, Xiao G. CuNi@C catalysts with high activity derived from metal-organic frameworks precursor for conversion of furfural to cyclopentanone. Chemical Engineering Journal, 2016, 299: 104–111

    Article  CAS  Google Scholar 

  11. Sharma R, Vishwakarma R A, Bharate S B. Bimetallic Cu-Mncatalyzed synthesis of 2-arylquinazolin-4(3H)-ones: Aqueous ammonia as source of a ring nitrogen atom. European Journal of Organic Chemistry, 2016, 2016(31): 5227–5233

    Article  CAS  Google Scholar 

  12. Safa K D, Mousazadeh H. A simple and efficient synthesis of organosilicon compounds containing 1,2,3-triazole moieties catalyzed by ZSM-5 zeolite-supported Cu–Co bimetallic oxides. Monatshefte für Chemie, 2016, 147(11): 1951–1961

    Article  CAS  Google Scholar 

  13. Ma X, Chi H, Yue H, Zhao Y, Xu Y, Lv J, Wang S, Gong J. Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous Cu-MCM-41 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(7): 2530–2539

    Article  CAS  Google Scholar 

  14. Zhao S, Yue H, Zhao Y, Wang B, Geng Y, Lv J, Wang S, Gong J, Ma X. Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2: Enhanced stability with boron dopant. Journal of Catalysis, 2013, 297: 142–150

    Article  CAS  Google Scholar 

  15. Shen Y, Meng Q, Huang S, Wang S, Gong J, Ma X. Reaction mechanism of dimethyl carbonate synthesis on Cu/β zeolites: DFT and AIM investigations. RSC Advances, 2012, 2(18): 7109–7119

    Article  CAS  Google Scholar 

  16. Janczarek M, Wei Z, Endo M, Ohtani B, Kowalska E. Silver- and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. Journal of Photonics for Energy, 2016, 7(1): 012008

    Article  Google Scholar 

  17. Li Z B, Wang X, Zhou R X, Wang Y, Li Y. Surface modification in Cu–Ag codoped TiO2: The first-principle calculation. Wuli Xuebao, 2017, 66(11): 261–269

    Google Scholar 

  18. Monga A, Bathla A, Pal B. A Cu–Au bimetallic co-catalysis for the improved photocatalytic activity of TiO2 under visible light radiation. Solar Energy, 2017, 155: 1403–1410

    Article  CAS  Google Scholar 

  19. Rahmatolahzadeh R, Ebadi M, Motevalli K. Preparation and characterization of Cu clusters and Cu–Ag alloy via galvanic replacement method for azo dyes degradation. Journal of Materials Science Materials in Electronics, 2017, 28(8): 6056–6063

    Article  CAS  Google Scholar 

  20. Wang Y, Su Q, Ye Q, Zhou F, Zhang Y. Polyelectrolyte brushes as efficient platform for synthesis of Cu and Pt bimetallic nanocrystals onto TiO2 nanowires. Surface and Interface Analysis, 2017, 49(9): 904–909

    Article  CAS  Google Scholar 

  21. Riaz N, Chong F K, Man Z B, Sarwar R, Farooq U, Khan A, Khan M S. Preparation, characterization and application of Cu–Ni/TiO2 in Orange II photodegradation under visible light: Effect of different reaction parameters and optimization. RSC Advances, 2016, 6(60): 55650–55665

    Article  CAS  Google Scholar 

  22. Zhu S, Xie X, Chen S C, Tong S, Lu G, Pui D Y H, Sun J. Cu–Ni nanowire-based TiO2 hybrid for the dynamic photodegradation of acetaldehyde gas pollutant under visible light. Applied Surface Science, 2017, 408: 117–124

    Article  CAS  Google Scholar 

  23. Wang T, Wei Y, Chang X, Li C, Li A, Liu S, Zhang J, Gong J. Homogeneous Cu2O p-n junction photocathodes for solar water splitting. Applied Catalysis B: Environmental, 2018, 226: 31–37

    Article  CAS  Google Scholar 

  24. Kavian S, Azizi S N, Ghasemi S. Fabrication of novel nanozeolitesupported bimetallic Pt–Cu nanoparticles modified carbon paste electrode for electrocatalytic oxidation of formaldehyde. International Journal of Hydrogen Energy, 2016, 41(32): 14026–14035

    Article  CAS  Google Scholar 

  25. Fuerte A, Valenzuela R X, Escudero MJ, Daza L. Study of a SOFC with a bimetallic Cu–Co-ceria anode directly fuelled with simulated biogas mixtures. International Journal of Hydrogen Energy, 2014, 39(8): 4060–4066

    Article  CAS  Google Scholar 

  26. Kaur G, Basu S. Performance studies of copper-iron/ceria-yttria stabilized zirconia anode for electro-oxidation of butane in solid oxide fuel cells. Journal of Power Sources, 2013, 241: 783–790

    Article  CAS  Google Scholar 

  27. Chang X, Wang T, Zhao Z J, Yang P, Greeley J, Mu R, Zhang G, Gong Z, Luo Z, Chen J, Cui Y, Ozin G A, Gong J. Tuning Cu/ Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angewandte Chemie International Edition, 2018, 57(47): 15415–15419

    Article  CAS  PubMed  Google Scholar 

  28. Long J, Yang P, Zhao Z, Chang X, Zha S, Zhang G, Mu R. The functionality of surface hydroxyls on selectivity and activity of CO2 reduction over Cu2O in aqueous solutions. Angewandte Chemie International Edition, 2018, 57(26): 7724–7728

    Article  CAS  Google Scholar 

  29. Gawande M B, Goswami A, Felpin F X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma R S. Cu and Cu-based nanoparticles: Synthesis and applications in review catalysis. Chemical Reviews, 2016, 116(6): 3722–3811

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed A, Elvati P, Violi A. Size-and phase-dependent structure of copper(II) oxide nanoparticles. RSC Advances, 2015, 5(44): 35033–35041

    Article  CAS  Google Scholar 

  31. Baig N B R, Varma R S. Copper modified magnetic bimetallic nano-catalysts ligand regulated catalytic activity. Current Organic Chemistry, 2013, 17(20): 2227–2237

    Article  CAS  Google Scholar 

  32. Evano G, Blanchard N, Toumi M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chemical Reviews, 2008, 108(8): 3054–3131

    Article  CAS  PubMed  Google Scholar 

  33. Li G, Li X H, Zhang Z J. Preparation methods of copper nanomaterials. Pragress in Chemistry, 2011, 23(8): 1644–1656 (in Chinese)

    CAS  Google Scholar 

  34. Mondal J, Biswas A, Chiba S, Zhao Y. Cu(0) nanoparticles deposited on nanoporous polymers: A recyclable heterogeneous nanocatalyst for ullmann coupling of aryl halides with amines in water. Scientific Reports, 2015, 5(1): 8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Patra A K, Dutta A, Bhaumik A. Cu nanorods and nanospheres and their excellent catalytic activity in chemoselective reduction of nitrobenzenes. Catalysis Communications, 2010, 11(7): 651–655

    Article  CAS  Google Scholar 

  36. Guo Y, Lin J, Li C, Lu S, Zhao C. Copper manganese oxides supported on multi-walled carbon nanotubes as an efficient catalyst for low temperature CO oxidation. Catalysis Letters, 2016, 146 (11): 2364–2375

    Article  CAS  Google Scholar 

  37. Allen S E, Walvoord R R, Padilla-Salinas R, Kozlowski M C. Aerobic copper-catalyzed organic reactions. Chemical Reviews, 2013, 113(8): 6234–6458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vasileff A, Xu C, Jiao Y, Zheng Y, Qiao S Z. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem, 2018, 4(8): 1809–1831

    Article  CAS  Google Scholar 

  39. Li M M J, Tsang S C E. Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: A mini-review and prospects. Catalysis Science & Technology, 2018, 8(14): 3450–3464

    Article  CAS  Google Scholar 

  40. Jablonska M, Palkovits R. Copper based catalysts for the selective ammonia oxidation into nitrogen and water vapour-recent trends and open challenges. Applied Catalysis B: Environmental, 2016, 181: 332–351

    Article  CAS  Google Scholar 

  41. Thakur D S, Kundu A. Catalysts for fatty alcohol production from renewable resources. Journal of the American Oil Chemists’ Society, 2016, 93(12): 1575–1593

    Article  CAS  Google Scholar 

  42. Deka P, Borah B J, Saikia H, Bharali P. Cu-based nanoparticles as emerging environmental catalysts. Chemical Record (New York, N.Y.), 2018, 19(2-3): 1–13

    Google Scholar 

  43. Liao F, Lo T W B, Tsang S C E. Recent developments in palladium-based bimetallic catalysts. ChemCatChem, 2015, 7(14): 1998–2014

    Article  CAS  Google Scholar 

  44. Zhang M, Yao R, Jiang H, Li G, Chen Y. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu(111) surface. Applied Surface Science, 2017, 412: 342–349

    Article  CAS  Google Scholar 

  45. Zhang M, Yao R, Jiang H, Li G, Chen Y. Catalytic activity of transition metal doped Cu(111) surfaces for ethanol synthesis from acetic acid hydrogenation: A DFT study. RSC Advances, 2017, 7 (3): 1443–1452

    Article  CAS  Google Scholar 

  46. Liu J, Lyu H, Chen Y, Li G, Jiang H, Zhang M. Insights into the mechanism of ethanol synthesis and ethyl acetate inhibition from acetic acid hydrogenation over Cu2In(100): A DFT study. Physical Chemistry Chemical Physics, 2017, 19(41): 28083–28097

    Article  CAS  PubMed  Google Scholar 

  47. Zha H, Dong X, Yu Y, Zhang M. Hydrogen-assisted versus hydroxyl-assisted CO dissociation over Co-doped Cu(111): A DFT study. Surface Science, 2018, 669: 114–120

    Article  CAS  Google Scholar 

  48. Ren B, Dong X, Yu Y, Wen G, Zhang M. A density functional theory study on the carbon chain growth of ethanol formation on Cu–Co (111) and (211) surfaces. Applied Surface Science, 2017, 412: 374–384

    Article  CAS  Google Scholar 

  49. Wang Q, Wang X, Liu J, Yang Y. Cu–Ni core-shell nanoparticles: Structure, stability, electronic, and magnetic properties: A spinpolarized density functional study. Journal of Nanoparticle Research, 2017, 19(2): 25

    Article  CAS  Google Scholar 

  50. Guo L, Li A, An X, Cao Z, Liu N. Catalytic activity of TM@Cu-12 core shell nanoclusters for water gas shift reaction. International Journal of Hydrogen Energy, 2015, 40(26): 8330–8340

    Article  CAS  Google Scholar 

  51. Wang J, Zhu H, Yu D, Chen J, Chen J, Zhang M, Wang L, Du M. Engineering the composition and structure of bimetallic Au–Cu alloy nanoparticles in carbon nanofibers: Self-supported electrode materials for electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2017, 9(23): 19756–19765

    Article  CAS  Google Scholar 

  52. Sarfraz S, Garcia-Esparza A T, Jedidi A, Cavallo L, Takanabe K. Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catalysis, 2016, 6(5): 2842–2851

    Article  CAS  Google Scholar 

  53. Liu H, Zhang R, Yan R, Li J, Wang B, Xie K. Insight into CH4 dissociation on NiCu catalyst: A first-principles study. Applied Surface Science, 2012, 258(20): 8177–8184

    Article  CAS  Google Scholar 

  54. Saqlain M A, Hussain A, Siddiq M, Leenaerts O, Leitao A A. DFT study of synergistic catalysis of the water-gas-shift reaction on Cu–Au bimetallic surfaces. ChemCatChem, 2016, 8(6): 1208–1217

    Article  CAS  Google Scholar 

  55. Prieto G, Beijer S, Smith M L, He M, Au Y, Wang Z, Bruce D A, Jong K. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angewandte Chemie International Edition, 2014, 53 (25): 6397–6401

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Zhang X, Sun Q, Chan S, Su H. Chain growth mechanism on bimetallic surfaces for higher alcohol synthesis from syngas. Catalysis Communications, 2015, 61: 57–61

    Article  CAS  Google Scholar 

  57. Sun K, Zhang M, Wang L. Effects of catalyst surface and hydrogen bond on ethanol dehydrogenation to ethoxy on Cu catalysts. Chemical Physics Letters, 2013, 585: 89–94

    Article  CAS  Google Scholar 

  58. Zhang M, Huang Y, Li R, Li G, Yu Y. A DFT study of ethanol adsorption and dehydrogenation on Cu/Cr2O3 Catalyst. Catalysis Letters, 2014, 144(11): 1978–1986

    Article  CAS  Google Scholar 

  59. Zhang M, Li R, Yu Y. A DFT study on the structure and properties of Cu/Cr2O3 catalyst. Chinese Journal of Chemistry, 2012, 30(4): 771–778

    Article  CAS  Google Scholar 

  60. Dong X, Lei J, Chen Y, Jiang H, Zhang M. Selective hydrogenation of acetic acid to ethanol on Cu–In catalyst supported by SBA-15. Applied Catalysis B: Environmental, 2019, 244: 448–458

    Article  CAS  Google Scholar 

  61. Studt F, Abild-Pedersen F, Wu Q, Jensen A D, Temel B, Grunwaldt J D, Norskov J K. CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. Journal of Catalysis, 2012, 293: 51–60

    Article  CAS  Google Scholar 

  62. Nie X, Wang H, Janik M J, Chen Y, Guo X, Song C. Mechanistic insight into C–C coupling over Fe–Cu bimetallic catalysts in CO2 hydrogenation. Journal of Physical Chemistry C, 2017, 121(24): 13164–13174

    Article  CAS  Google Scholar 

  63. Dong X, Guo L, Wen C, Ren N, Cao Z, Liu N, Guo L L. Mechanism of CO preferential oxidation catalyzed by Cu (n) Pt (n = 3–12): A DFT study. Research on Chemical Intermediates, 2015, 41(12): 10049–10066

    Article  CAS  Google Scholar 

  64. Yuan X, Zheng J, Zhang Q, Li S, Yang Y, Gong J. Liquid-phase hydrogenation of cinnamaldehyde over Cu–Au/SiO2 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(9): 3300–3311

    Article  CAS  Google Scholar 

  65. Nakagawa Y, Tomishige K. Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science & Technology, 2011, 1(2): 179–190

    Article  CAS  Google Scholar 

  66. Delgado S N, Vivier L, Especel C. Polyol hydrogenolysis on supported Pt catalysts: Comparison between glycerol and 1,2- propanediol. Catalysis Communications, 2014, 43: 107–111

    Article  CAS  Google Scholar 

  67. Guan J, Chen X, Peng G, Wang X, Cao Q, Lan Z, Mu X. Role of ReOx in Re-modified Rh/ZrO2 and Ir/ZrO2 catalysts in glycerol hydrogenolysis: Insights from first-principles study. Chinese Journal of Catalysis, 2013, 34(9): 1656–1666

    Article  CAS  Google Scholar 

  68. Hassou M, Couenne F, le Gorrec Y, Tayakout M. Modeling and simulation of polymeric nanocapsule formation by emulsion diffusion method. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(8): 2094–2105

    Article  CAS  Google Scholar 

  69. van Ryneveld E, Mahomed A S, van Heerden P S, Friedrich H B. Direct hydrogenolysis of highly concentrated glycerol solutions over supported Ru, Pd and Pt catalyst systems. Catalysis Letters, 2011, 141(7): 958–967

    Article  CAS  Google Scholar 

  70. Ardila A N, Sanchez-Castillo M A, Zepeda T A, Luz Villa A, Fuentes G A. Glycerol hydrodeoxygenation to 1,2-propanediol catalyzed by CuPd/TiO2-Na. Applied Catalysis B: Environmental, 2017, 219: 658–671

    Article  CAS  Google Scholar 

  71. Xia S, Yuan Z, Wang L, Chen P, Hou Z. Hydrogenolysis of glycerol on bimetallic Pd–Cu/solid-base catalysts prepared via layered double hydroxides precursors. Applied Catalysis A, General, 2011, 403(1-2): 173–182

    Article  CAS  Google Scholar 

  72. Feng Y S, Liu C, Kang Y M, Zhou X M, Liu L L, Deng J, Xu H J, Fu Y. Selective hydrogenolysis of glycerol to 1,2-propanediol catalyzed by supported bimetallic PdCu-KF/γ-Al2O3. Chemical Engineering Journal, 2015, 281: 96–101

    Article  CAS  Google Scholar 

  73. Jin X, Dang L, Lohrman J, Subramaniam B, Ren S, Chaudhari RV. Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano, 2013, 7(2): 1309–1316

    Article  CAS  PubMed  Google Scholar 

  74. Kang Y, Bu X, Wang G, Wang X, Li Q, Feng Y. A highly active Cu–Pt/SiO2 bimetal for the hydrogenolysis of glycerol to 1,2- propanediol. Catalysis Letters, 2016, 146(8): 1408–1414

    Article  CAS  Google Scholar 

  75. Xia S, Zheng L, Nie R, Chen P, Lou H, Hou Z. Trivalent metal ions M3+ in M0.02Cu0.4Mg5.6Al1.98(OH)16CO3 layered double hydroxide as catalyst precursors for the hydrogenolysis of glycerol. Chinese Journal of Catalysis, 2013, 34(5): 986–992

    Article  CAS  Google Scholar 

  76. Shozi M L, Dasireddy V D B C, Singh S, Mohlala P, Morgan D J, Iqbal S, Friedrich H B. An investigation of Cu–Re–ZnO catalysts for the hydrogenolysis of glycerol under continuous flow conditions. Sustainable Energy & Fuels, 2017, 1(6): 1437–1445

    Article  CAS  Google Scholar 

  77. Vasiliadou E S, Lemonidou A A. Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis. Applied Catalysis A, General, 2011, 396 (1-2): 177–185

    Article  CAS  Google Scholar 

  78. Wu Z, Mao Y, Wang X, Zhang M. Preparation of a Cu–Ru/carbon nanotube catalyst for hydrogenolysis of glycerol to 1,2-propanediol via hydrogen spillover. Green Chemistry, 2011, 13(5): 1311–1316

    Article  CAS  Google Scholar 

  79. Zhou J, Guo L, Guo X, Mao J, Zhang S. Selective hydrogenolysis of glycerol to propanediols on supported Cu–Containing bimetallic catalysts. Green Chemistry, 2010, 12(10): 1835–1843

    Article  CAS  Google Scholar 

  80. Sun D, Yamada Y, Sato S. Effect of Ag loading on Cu/Al2O3 catalyst in the production of 1,2-propanediol from glycerol. Applied Catalysis A, General, 2014, 475: 63–68

    Article  CAS  Google Scholar 

  81. Pudi S M, Mondal T, Biswas P, Biswas S, Sinha S. Conversion of glycerol into value-added products over Cu–Ni catalyst supported on γ-Al2O3 and activated carbon. International Journal of Chemical Reactor Engineering, 2014, 12(1): 1–12

    Article  CAS  Google Scholar 

  82. Pudi S M, Biswas P, Kumar S, Sarkar B. Selective hydrogenolysis of glycerol to 1,2-propanediol over bimetallic Cu–Ni catalysts supported on γ-Al2O3. Journal of the Brazilian Chemical Society, 2015, 26(8): 1551–1564

    CAS  Google Scholar 

  83. Pandhare N N, Pudi S M, Biswas P, Sinha S. Vapor phase hydrogenolysis of glycerol to 1,2-propanediol over γ-Al2O3 supported copper or nickel monometallic and copper-nickel bimetallic catalysts. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61: 90–96

    Article  CAS  Google Scholar 

  84. Yun Y S, Park D S, Yi J. Effect of nickel on catalytic behaviour of bimetallic Cu–Ni catalyst supported on mesoporous alumina for the hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science & Technology, 2014, 4(9): 3191–3202

    Article  CAS  Google Scholar 

  85. Al Ameen A, Mondal S, Pudi S M, Pandhare N N, Biswas P. Liquid phase hydrogenolysis of glycerol over highly active 50% Cu–Zn(8:2)/MgO catalyst: Reaction parameter optimization by using response surface methodology. Energy & Fuels, 2017, 31(8): 8521–8533

    Article  CAS  Google Scholar 

  86. Duran-Martin D, Lopez Granados M, Fierro J L G, Pinel C, Mariscal R. Deactivation of CuZn catalysts used in glycerol hydrogenolysis to obtain 1,2-propanediol. Topics in Catalysis, 2017, 60(15-16): 1062–1071

    Article  CAS  Google Scholar 

  87. Freitas I C, Manfro R L, Souza M M V M. Hydrogenolysis of glycerol to propylene glycol in continuous system without hydrogen addition over Cu–Ni catalysts. Applied Catalysis B: Environmental, 2018, 220: 31–41

    Article  CAS  Google Scholar 

  88. Cai F, Pan D, Ibrahim J J, Zhang J, Xiao G. Hydrogenolysis of glycerol over supported bimetallic Ni/Cu catalysts with and without external hydrogen addition in a fixed-bed flow reactor. Applied Catalysis A, General, 2018, 564: 172–182

    Article  CAS  Google Scholar 

  89. Dusescu C, Bolocan I. New catalysts for the glycerol hydrogenolysis. Revista De Chimie, 2012, 63(7): 732–738

    CAS  Google Scholar 

  90. Mane R B, Rode C V. Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu–Al oxide under an inert atmosphere. Green Chemistry, 2012, 14(10): 2780–2789

    Article  CAS  Google Scholar 

  91. Samson K, Zelazny A, Grabowski R, Ruggiero-Mikolajczyk M, Sliwa M, Pamin K, Kornas A, Lachowska M. Influence of the carrier and composition of active phase on physicochemical and catalytic properties of CuAg/oxide catalysts for selective hydrogenolysis of glycerol. Research on Chemical Intermediates, 2015, 41(12): 9295–9306

    Article  CAS  Google Scholar 

  92. Sun D, Sato S, Ueda W, Primo A, Garcia H, Corma A. Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 2016, 18(9): 2579–2597

    Article  CAS  Google Scholar 

  93. Huang Z, Barnett K J, Chada J P, Brentzel Z J, Xu Z, Dumesic J A, Huber G W. Hydrogenation of γ-butyrolactone to 1,4-butanediol over CuCo/TiO2 bimetallic catalysts. ACS Catalysis, 2017, 7(12): 8429–8440

    Article  CAS  Google Scholar 

  94. Yue H, Zhao Y, Zhao S, Wang B, Ma X, Gong J. A copperphyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions. Nature Communications, 2013, 4(1): 2339

    Article  PubMed  Google Scholar 

  95. Yue H, Zhao Y, Zhao L, Lv J, Wang S, Gong J, Ma X. Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/ SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(9): 2798–2809

    Article  CAS  Google Scholar 

  96. Zhu Y M, Shi X W L. Hydrogenation of ethyl acetate to ethanol over bimetallic Cu–Zn/SiO2 catalysts prepared by means of coprecipitation. Bulletin of the Korean Chemical Society, 2014, 35(1): 141–146

    Article  CAS  Google Scholar 

  97. Zhao Y, Shan B, Wang Y, Zhou J, Wang S, Ma X. An effective CuZn-SiO2 bimetallic catalyst prepared by hydrolysis precipitation method for the hydrogenation of methyl acetate to ethanol. Industrial & Engineering Chemistry Research, 2018, 57(13): 4526–4534

    Article  CAS  Google Scholar 

  98. Cai B, Zhou X C, Miao Y C, Luo J Y, Pan H, Huang Y B. Enhanced catalytic transfer hydrogenation of ethyl levulinate to γ- valerolactone over a robust Cu–Ni bimetallic catalyst. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1322–1331

    Article  CAS  Google Scholar 

  99. Wu J, Gao G, Sun P, Long X, Li F. Synergetic catalysis of bimetallic CuCo nanocomposites for selective hydrogenation of bioderived esters. ACS Catalysis, 2017, 7(11): 7890–7901

    Article  CAS  Google Scholar 

  100. Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. Journal of the American Chemical Society, 2012, 134(34): 13922–13925

    Article  CAS  PubMed  Google Scholar 

  101. Long W, Liu P, Lv Y, Xiong W, Hao F, Luo H A. Silica-supported Cu–Pt bimetallic catalysts for liquid-phase diethyl oxalate hydrogenation. Canadian Journal of Chemistry, 2018, 96(4): 394–403

    Article  CAS  Google Scholar 

  102. Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 2009, 147(2): 133–138

    Article  CAS  Google Scholar 

  103. Subramanian N D, Kumar C S S R, Watanabe K, Fischer P, Tanaka R, Spivey J J. A DRIFTS study of CO adsorption and hydrogenation on Cu-based core-shell nanoparticles. Catalysis Science & Technology, 2012, 2(3): 621–631

    Article  CAS  Google Scholar 

  104. Yue H, Ma X, Gong J. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Accounts of Chemical Research, 2014, 47(5): 1483–1492

    Article  CAS  PubMed  Google Scholar 

  105. Niu T, Liu G L, Chen Y, Yang J, Wu J, Cao Y, Liu Y. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu–Co nanocatalyst for higher alcohol synthesis from syngas. Applied Surface Science, 2016, 364: 388–399

    Article  CAS  Google Scholar 

  106. Eren B, Torres D, Karslioglu O, Liu Z, Wu C H, Stacchiola D, Bluhm H, Somorjai G A, Salmeron M. The structure of coppercobalt surface alloys in equilibrium with carbon monoxide gas. Journal of the American Chemical Society, 2018, 140(21): 6575–6581

    Article  CAS  PubMed  Google Scholar 

  107. Hong Y, Yang Q, Kang N, Liu G, Ma Z, Liu Y. Cu–Co alloy nanoparticles supported on SiO2 and modified by La and Y for ethanol synthesis from syngas. ChemistrySelect, 2017, 2(25): 7580–7589

    Article  CAS  Google Scholar 

  108. Sun X, Yu Y, Zhang M. Insight into the effect of promoter Co on C2 oxygenate formation from syngas on CoCu(100) and Cu(100): A comparative DFT study. Applied Surface Science, 2018, 434: 28–39

    Article  CAS  Google Scholar 

  109. Yang Q, Cao A, Kang N, Ning H, Wang J, Liu Z T, Liu Y. Bimetallic nano Cu–Co based catalyst for direct ethanol synthesis from syngas and its structure variation with reaction time in slurry reactor. Industrial & Engineering Chemistry Research, 2017, 56 (11): 2889–2898

    Article  CAS  Google Scholar 

  110. Zhang M, Gong H, Yu Y. DFT study of key elementary steps for C2+ alcohol synthesis on bimetallic sites of Cu–Co shell-core structure from syngas. Molecular Catalysis, 2017, 443: 165–174

    Article  CAS  Google Scholar 

  111. Lü D, Zhu Y, Sun Y. Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO. Chinese Journal of Catalysis, 2013, 34(11): 1998–2003

    Article  CAS  Google Scholar 

  112. Wang P, Du X, Zhuang W, Cai K, Li J, Xu Y, Zhou Y, Sun K, Chen S, Li X, Tan Y. Carbon nanotube-supported copper-cobalt catalyst for the production of higher carbon number alcohols through carbon monoxide hydrogenation. Journal of the Brazilian Chemical Society, 2018, 29(7): 1373–1381

    CAS  Google Scholar 

  113. Liu G, Niu T, Pan D, Liu F, Liu Y. Preparation of bimetal Cu–Co nanoparticles supported on meso-macroporous SiO2 and their application to higher alcohols synthesis from syngas. Applied Catalysis A, General, 2014, 483: 10–18

    Article  CAS  Google Scholar 

  114. Wang J, Chernavskii P A, Khodakov A Y, Wang Y. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation. Journal of Catalysis, 2012, 286: 51–61

    Article  CAS  Google Scholar 

  115. Xiao K, Bao Z, Qi X, Wang X, Zhong L, Lin M, Fang K, Sun Y. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas. Catalysis Communications, 2013, 40: 154–157

    Article  CAS  Google Scholar 

  116. Hu W, Li W, Shen R. Cetyltrimethylammonium bromidepromoted, ZnO-supported, and Mn-promoted Cu–Fe catalyst for the hydrogenation of CO to low-carbon alcohols. Energy Technology (Weinheim), 2017, 5(4): 557–567

    Article  CAS  Google Scholar 

  117. Cao A, Yang Q, Wei Y, Zhang L, Liu Y. Synthesis of higher alcohols from syngas over CuFeMg-LDHs/CFs composites. International Journal of Hydrogen Energy, 2017, 42(27): 17425–17434

    Article  CAS  Google Scholar 

  118. Ling L, Wang Q, Zhang R, Li D, Wang B. Formation of C2 oxygenates and ethanol from syngas on an Fe-decorated Cu-based catalyst: Insight into the role of Fe as a promoter. Physical Chemistry Chemical Physics, 2017, 19(45): 30883–30894

    Article  CAS  PubMed  Google Scholar 

  119. Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis. Journal of Molecular Catalysis A: Chemical, 2013, 378: 319–325

    Article  CAS  Google Scholar 

  120. Huang C, Zhang M, Zhu C, Mu X, Zhang K, Zhong L, Fang K, Wu M. Fabrication of highly stable SiO2 encapsulated multiple CuFe nanoparticles for higher alcohols synthesis via CO hydrogenation. Catalysis Letters, 2018, 148(4): 1080–1092

    Article  CAS  Google Scholar 

  121. Sun C, Mao D, Han L, Yu J. Effect of impregnation sequence on performance of SiO2 supported Cu–Fe catalysts for higher alcohols synthesis from syngas. Catalysis Communications, 2016, 84: 175–178

    Article  CAS  Google Scholar 

  122. Wu Q, Eriksen W L, Duchstein L D L, Christensen J M, Damsgaard C D, Wagner J B, Temel B, Grunwaldt J D, Jensen A D. Influence of preparation method on supported Cu–Ni alloys and their catalytic properties in high pressure CO hydrogenation. Catalysis Science & Technology, 2014, 4(2): 378–386

    Article  CAS  Google Scholar 

  123. Maniecki T P, Mierczynski P, Maniukiewicz W, Bawolak K, Gebauer D, Jozwiak W K. Bimetallic Au–Cu, Ag–Cu/CrAl3O6 catalysts for methanol synthesis. Catalysis Letters, 2009, 130(3-4): 481–488

    Article  CAS  Google Scholar 

  124. Padama A A B, Villaos R A B, Albia J R, Dino WA, Nakanishi H, Kasai H. CO-induced Pd segregation and the effect of subsurface Pd on CO adsorption on CuPd surfaces. Journal of Physics Condensed Matter, 2017, 29(2): 025005

    Article  CAS  PubMed  Google Scholar 

  125. Mierczynski P, Ciesielski R, Kedziora A, Shtyka O, Maniecki T P. Methanol synthesis using copper catalysts supported on CeO2–Al2O3 mixed oxide. Fibre Chemistry, 2016, 48(4): 271–275

    Article  CAS  Google Scholar 

  126. Zeng C, Sun J, Yang G, Ooki I, Hayashi K, Yoneyama Y, Taguchi A, Abe T, Tsubaki N. Highly selective and multifunctional Cu/ ZnO/Zeolite catalyst for one-step dimethyl ether synthesis: Preparing catalyst by bimetallic physical sputtering. Fuel, 2013, 112: 140–144

    Article  CAS  Google Scholar 

  127. Sun J, Yang G, Ma Q, Ooki I, Taguchi A, Abe T, Xie Q, Yoneyama Y, Tsubaki N. Fabrication of active Cu–Zn nanoalloys on H-ZSM5 zeolite for enhanced dimethyl ether synthesis via syngas. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(23): 8637–8643

    Article  CAS  Google Scholar 

  128. Liu Y, Deng X, Han P, Huang W. CO hydrogenation to higher alcohols over CuZnAl catalysts without promoters: Effect of pH value in catalyst preparation. Fuel Processing Technology, 2017, 167: 575–581

    Article  CAS  Google Scholar 

  129. Porosoff M D, Yan B, Chen J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy & Environmental Science, 2016, 9(1): 62–73

    Article  CAS  Google Scholar 

  130. Behrens M, Studt F, Kasatkin I, Kuehl S, Haevecker M, Abild- Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep B L, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336(6083): 893–897

    Article  CAS  PubMed  Google Scholar 

  131. Spencer M S. The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Topics in Catalysis, 1999, 8(3-4): 259–266

    Article  CAS  Google Scholar 

  132. Szanyi J, Goodman D W. Methanol synthesis on a Cu(100) catalyst. Catalysis Letters, 1991, 10(5-6): 383–390

    Article  CAS  Google Scholar 

  133. Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R. Role of lattice strain and defects in copper particles on the activity of Cu/ ZnO/Al2O3 catalysts for methanol synthesis. Angewandte Chemie International Edition, 2007, 46(38): 7324–7327

    Article  CAS  PubMed  Google Scholar 

  134. Gesmanee S, Koo-Amornpattana W. Catalytic hydrogenation of CO2 for methanol production in fixed-bed reactor using Cu–Zn supported on γ-Al2O3. In: 2017 International Conference on Alternative Energy in Developing Countries and Emerging Economies, 2017, 138: 739–744

    CAS  Google Scholar 

  135. Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P. CO2 hydrogenation to methanol using Cu–Zn catalyst supported on reduced graphene oxide nanosheets. Journal of CO2 Utilization, 2016, 16: 104–113

    Article  CAS  Google Scholar 

  136. Diez-Ramirez J, Diaz J A, Sanchez P, Dorado F. Optimization of the Pd/Cu ratio in Pd–Cu–Zn/SiC catalysts for the CO2 hydrogenation to methanol at atmospheric pressure. Journal of CO2 Utilization, 2017, 22: 71–80

    Article  CAS  Google Scholar 

  137. Kattel S, Ramirez P J, Chen J G, Rodriguez J A, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355(6331): 1296–1299

    Article  CAS  PubMed  Google Scholar 

  138. Zhang C, Liao P, Wang H, Sun J, Gao P. Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO2 hydrogenation. Materials Chemistry and Physics, 2018, 215: 211–220

    Article  CAS  Google Scholar 

  139. Graciani J, Mudiyanselage K, Xu F, Baber A E, Evans J, Senanayake S D, Stacchiola D J, Liu P, Hrbek J, Fernandez Sanz J, Rodriguez J A. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science, 2014, 345 (6196): 546–550

    Article  CAS  PubMed  Google Scholar 

  140. Rodriguez J A, Liu P, Stacchiola D J, Senanayake S D, White MG, Chen J G. Hydrogenation of CO2 to methanol: Importance of metal-oxide and metal-carbide interfaces in the activation of CO2. ACS Catalysis, 2015, 5(11): 6696–6706

    Article  CAS  Google Scholar 

  141. Qiu M, Tao H, Li Y, Li Y, Ding K, Huang X, Chen W, Zhang Y. Toward improving CO2 dissociation and conversion to methanol via CO-hydrogenation on Cu(100) surface by introducing embedded Co nanoclusters as promoters: A DFT study. Applied Surface Science, 2018, 427: 837–847

    Article  CAS  Google Scholar 

  142. Dean J, Yang Y, Austin N, Veser G, Mpourmpakis G. Design of copper-based bimetallic nanoparticles for carbon dioxide adsorption and activation. ChemSusChem, 2018, 11(7): 1169–1178

    Article  CAS  PubMed  Google Scholar 

  143. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F. Solid-state interactions, adsorption sites and functionality of Cu–ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A, General, 2008, 350(1): 16–23

    Article  CAS  Google Scholar 

  144. Bianchi D, Chafik T, Khalfallah M, Teichner S J. Intermediate species on zirconia supported methanol aerogel catalysts. V. Adsorption of methanol. Applied Catalysis A, General, 1995, 123 (1): 89–110

    Article  CAS  Google Scholar 

  145. Fisher I A, Bell A T. In-situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. Journal of Catalysis, 1998, 178(1): 222–237

    Article  Google Scholar 

  146. Din I U, Shaharun M S, Subbarao D, Naeem A. Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Influence of calcination temperature. Journal of Power Sources, 2015, 274: 619–628

    Article  CAS  Google Scholar 

  147. Din I U, Shaharun M S, Naeem A, Tasleem S, Johan M R. Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration. Chemical Engineering Journal, 2018, 334: 619–629

    Article  CAS  Google Scholar 

  148. Jiang X, Koizumi N, Guo X, Song C. Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2015, 170: 173–185

    Article  CAS  Google Scholar 

  149. Jiang X, Wang X X, Nie X W, Koizumi N, Guo X W, Song C S. CO2 hydrogenation to methanol on Pd–Cu bimetallic catalysts: H2/ CO2 ratio dependence and surface species. Catalysis Today, 2018, 316: 62–70

    Article  CAS  Google Scholar 

  150. Liu L, Fan F, Jiang Z, Gao X, Wei J, Fang T. Mechanistic study of Pd–Cu bimetallic catalysts for methanol synthesis from CO2 hydrogenation. Journal of Physical Chemistry C, 2017, 121(47): 26287–26299

    Article  CAS  Google Scholar 

  151. Liu L, Yao H, Jiang Z, Fang T. Theoretical study of methanol synthesis from CO2 hydrogenation on PdCu3(111) surface. Applied Surface Science, 2018, 451: 333–345

    Article  CAS  Google Scholar 

  152. Nie X, Jiang X, Wang H, Luo W, Janik M J, Chen Y, Guo X, Song C. Mechanistic understanding of alloy effect and water promotion for Pd–Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catalysis, 2018, 8(6): 4873–4892

    Article  CAS  Google Scholar 

  153. Mistry H, Reske R, Strasser P, Cuenya B R. Size-dependent reactivity of gold-copper bimetallic nanoparticles during CO2 electroreduction. Catalysis Today, 2017, 288: 30–36

    Article  CAS  Google Scholar 

  154. Tan Q, Shi Z, Wu D. CO2 hydrogenation to methanol over a highly active Cu–Ni/CeO2-nanotube catalyst. Industrial & Engineering Chemistry Research, 2018, 57(31): 10148–10158

    Article  CAS  Google Scholar 

  155. Branco J B, Ferreira A C, Goncalves A P, Soares C O, Almeida Gasche T. Synthesis of methanol using copper-f block element bimetallic oxides as catalysts and greenhouse gases (CO2, CH4) as feedstock. Journal of Catalysis, 2016, 341: 24–32

    Article  CAS  Google Scholar 

  156. Shi X, Yu H, Gao S, Li X, Fang H, Li R, Li Y, Zhang L, Liang X, Yuan Y. Synergistic effect of nitrogen-doped carbon-nanotubesupported Cu–Fe catalyst for the synthesis of higher alcohols from syngas. Fuel, 2017, 210: 241–248

    Article  CAS  Google Scholar 

  157. Zhao F, Gong M, Cao K, Zhang Y, Li J, Chen R. Atomic layer deposition of Ni on Cu nanoparticles for methanol synthesis from CO2 hydrogenation. ChemCatChem, 2017, 9(19): 3772–3778

    Article  CAS  Google Scholar 

  158. Li R, Zhang M, Yu Y. A DFT study on the Cu (111) surface for ethyl acetate synthesis from ethanol dehydrogenation. Applied Surface Science, 2012, 258(18): 6777–6784

    Article  CAS  Google Scholar 

  159. Velu S, Suzuki K, Okazaki M, Kapoor M P, Osaki T, Ohashi F. Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation. Journal of Catalysis, 2000, 194(2): 373–384

    Article  CAS  Google Scholar 

  160. Perez-Hernandez R, Galicia GM, Anaya DM, Palacios J, Angeles- Chavez C, Arenas-Alatorre J. Synthesis and characterization of bimetallic Cu–Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol. International Journal of Hydrogen Energy, 2008, 33(17): 4569–4576

    Article  CAS  Google Scholar 

  161. Lytkina A A, Zhilyaeva N A, Ermilova M M, Orekhova N V, Yaroslavtsev A B. Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming. International Journal of Hydrogen Energy, 2015, 40(31): 9677–9684

    Article  CAS  Google Scholar 

  162. Mayr L, Koepfle N, Kloetzer B, Goetsch T, Bernardi J, Schwarz S, Keilhauer T, Armbruester M, Penner S. Microstructural and chemical evolution and analysis of a self-activating CO2-selective Cu–Zr bimetallic methanol steam reforming catalyst. Journal of Physical Chemistry C, 2016, 120(44): 25395–25404

    Article  CAS  Google Scholar 

  163. Lytkina A A, Orekhova N V, Ermilova M M, Yaroslavtsev A B. The influence of the support composition and structure (MxZr1–xO2-d) of bimetallic catalysts on the activity in methanol steam reforming. International Journal of Hydrogen Energy, 2018, 43(1): 198–207

    Article  CAS  Google Scholar 

  164. Lu T, Du Z, Liu J, Chen C, Xu J. Dehydrogenation of primary aliphatic alcohols to aldehydes over Cu–Ni bimetallic catalysts. Chinese Journal of Catalysis, 2014, 35(12): 1911–1916

    Article  CAS  Google Scholar 

  165. Yang X, Fu X, Bu N, Han L, Wang J, Song C, Su Y, Zhou L, Lu T. Promotion effect of nickel for Cu–Ni/γ-Al2O3 catalysts in the transfer dehydrogenation of primary aliphatic alcohols. Journal of the Indian Chemical Society, 2017, 14(1): 111–119

    CAS  Google Scholar 

  166. Mahata N, Cunha A F, Órfão J J M, Figueiredo J L. Highly selective hydrogenation of C = C double bond in unsaturated carbonyl compounds over NiC catalyst. Chemical Engineering Journal, 2012, 188: 155–159

    Article  CAS  Google Scholar 

  167. van Haasterecht T, van Deelen T W, de Jong K P, Bitter J H. Transformations of polyols to organic acids and hydrogen in aqueous alkaline media. Catalysis Science & Technology, 2014, 4 (8): 2353–2366

    Article  Google Scholar 

  168. Chen L C, Cheng H, Chiang C W, Lin S D. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst. ChemSusChem, 2015, 8(10): 1787–1793

    Article  CAS  PubMed  Google Scholar 

  169. Khzouz M, Gkanas E I, Du S, Wood J. Catalytic performance of Ni–Cu/Al2O3 for effective syngas production by methanol steam reforming. Fuel, 2018, 232: 672–683

    Article  CAS  Google Scholar 

  170. Ponomareva E A, Krasnikova I V, Egorova E V, Mishakov I V, Vedyagin A A. Dehydrogenation of ethanol over carbon-supported Cu–Co catalysts modified by catalytic chemical vapor deposition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(1): 399–408

    Article  CAS  Google Scholar 

  171. Deinega I V, Dolgykh LY, Stolyarchuk I L, Staraya L A, Strizhak P E, Moroz E M, Pakharukova V P, Zyuzin D A. Catalytic properties of M–Cu/ZrO2 (M = Fe, Co, Ni) in steam reforming of ethanol. Theoretical and Experimental Chemistry, 2013, 48(6): 386–393

    Article  CAS  Google Scholar 

  172. Mierczynski P. Comparative studies of bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu catalysts supported on ZnO–Al2O3, ZrO2–Al2O3 systems. Catalysis Letters, 2016, 146(10): 1825–1837

    Article  CAS  Google Scholar 

  173. Mierczynski P, Vasilev K, Mierczynska A, Maniukiewicz W, Ciesielski R, Rogowski J, Szynkowska IM, Trifonov AY, Dubkov S V, Gromov D G, Maniecki T P. The effect of gold on modern bimetallic Au–Cu/MWCNT catalysts for the oxy-steam reforming of methanol. Catalysis Science & Technology, 2016, 6(12): 4168–4183

    Article  CAS  Google Scholar 

  174. Xu J, Yue H, Liu S, Wang H, Du Y, Xu C, Dong W, Liu C. Cu–Ag/ hydrotalcite catalysts for dehydrogenative cross-coupling of primary and secondary benzylic alcohols. RSC Advances, 2016, 6(29): 24164–24174

    Article  CAS  Google Scholar 

  175. Sekizawa K, Yano S, Eguchi K, Arai H. Selective removal of CO in methanol reformed gas over Cu-supported mixed metal oxides. Applied Catalysis A, General, 1998, 169(2): 291–297

    Article  CAS  Google Scholar 

  176. Utaka T, Sekizawa K, Eguchi K. CO removal by oxygen-assisted water gas shift reaction over supported Cu catalysts. Applied Catalysis A, General, 2000, 194: 21–26

    Article  Google Scholar 

  177. Utaka T, Takeguchi T, Kikuchi R, Eguchi K. CO removal from reformed fuels over Cu and precious metal catalysts. Applied Catalysis A, General, 2003, 246(1): 117–124

    Article  CAS  Google Scholar 

  178. Ghosh S, Hariharan S, Tiwari A K. Water adsorption and dissociation on copper/nickel bimetallic surface alloys: Effect of surface temperature on reactivity. Journal of Physical Chemistry C, 2017, 121(30): 16351–16365

    Article  CAS  Google Scholar 

  179. Ayastuy J L, Gurbani A, González-Marcos MP, Gutiérrez-Ortiz M A. Effect of copper loading on copper-ceria catalysts performance in CO selective oxidation for fuel cell applications. International Journal of Hydrogen Energy, 2010, 35(3): 1232–1244

    Article  CAS  Google Scholar 

  180. Gamboa-Rosales N K, Ayastuy J L, Gonzalez-Marcos M P, Gutierrez-Ortiz MA. Effect of Au promoter in CuO/CeO2 catalysts for the oxygen-assisted WGS reaction. Catalysis Today, 2011, 176 (1): 63–71

    Article  CAS  Google Scholar 

  181. Gamboa-Rosales N K, Ayastuy J L, Gonzalez-Marcos M P, Gutierrez-Ortiz M A. Oxygen-enhanced water gas shift over ceriasupported Au–Cu bimetallic catalysts prepared by wet impregnation and deposition-precipitation. International Journal of Hydrogen Energy, 2012, 37(8): 7005–7016

    Article  CAS  Google Scholar 

  182. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K. Effects of noble metal-doping on Cu/ZnO/Al2O3 catalysts for water-gas shift reaction-Catalyst preparation by adopting “memory effect” of hydrotalcite. Applied Catalysis A, General, 2008, 337 (1): 48–57

    Article  CAS  Google Scholar 

  183. Fox E B, Lee A F, Wilson K, Song C. In-situ XPS study on the reducibility of Pd-promoted Cu/CeO2 catalysts for the oxygen- assisted water-gas-shift reaction. Topics in Catalysis, 2008, 49(1-2): 89–96

    Article  CAS  Google Scholar 

  184. Kugai J, Fox E B, Song C. Kinetic characteristics of oxygenenhanced water gas shift on CeO2-supported Pt-Cu and Pd–Cu bimetallic catalysts. Applied Catalysis A, General, 2015, 497: 31–41

    Article  CAS  Google Scholar 

  185. Arbeláez O, López-Ríos V, Villa A L, Villegas A. Experimental design to determine the effect of the pellet size of bimetallic Cu–Ni catalysts in the water gas shift reaction. Revista Colombiana de Quimica, 2018, 47(1): 50–56

    Article  Google Scholar 

  186. Huang Y C, Zhou T, Liu H, Ling C, Wang S, Du J Y. Do Ni/Cu and Cu/Ni alloys have different catalytic performances towards watergas shift? A density functional theory investigation. Chem- PhysChem, 2014, 15(12): 2490–2496

    CAS  Google Scholar 

  187. Ang ML, Miller J T, Cui Y, Mo L, Kawi S. Bimetallic Ni–Cu alloy nanoparticles supported on silica for the water-gas shift reaction: Activating surface hydroxyls via enhanced CO adsorption. Catalysis Science & Technology, 2016, 6(10): 3394–3409

    Article  CAS  Google Scholar 

  188. Arbeladez O, Reina T R, Ivanova S, Bustarnante F, Villa A L, Centeno M A, Odriozola J A. Mono and bimetallic Cu–Ni structured catalysts for the water gas shift reaction. Applied Catalysis A, General, 2015, 497: 1–9

    Article  CAS  Google Scholar 

  189. Ray D, Ghosh S, Tiwari A K. Controlling heterogeneous catalysis of water dissociation using Cu–Ni bimetallic alloy surfaces: A quantum dynamics study. Journal of Physical Chemistry A, 2018, 122(26): 5698–5709

    Article  CAS  Google Scholar 

  190. Yan H, Qin X T, Yin Y, Teng Y F, Jin Z, Jia C J. Promoted Cu–Fe3O4 catalysts for low-temperature water gas shift reaction: Optimization of Cu content. Applied Catalysis B: Environmental, 2018, 226: 182–193

    Article  CAS  Google Scholar 

  191. Shinde V M, Madras G. Water gas shift reaction over multicomponent ceria catalysts. Applied Catalysis B: Environmental, 2012, 123: 367–378

    Article  CAS  Google Scholar 

  192. Tepamatr P, Laosiripojana N, Charojrochkul S. Water gas shift reaction over monometallic and bimetallic catalysts supported by mixed oxide materials. Applied Catalysis A, General, 2016, 523: 255–262

    Article  CAS  Google Scholar 

  193. Dasireddy V D B C, Valand J, Likozar B. PROX reaction of CO in H2/H2O/CO2 water-gas shift (WGS) feedstocks over Cu–Mn/ Al2O3 and Cu–Ni/Al2O3 catalysts for fuel cell applications. Renewable Energy, 2018, 116: 75–87

    Article  CAS  Google Scholar 

  194. Rad A R S, Khoshgouei M B, Rezvani S, Rezvani A R. Study of Cu–Ni/SiO2 catalyst prepared from a novel precursor, [Cu(H2O)6] [Ni(dipic)2]·2H2O/SiO2, for water gas shift reaction. Fuel Processing Technology, 2012, 96: 9–15

    Article  CAS  Google Scholar 

  195. Liu Z, Ihl Woo S. Recent advances in catalytic DeNOx science and technology. Catalysis Reviews, 2006, 48(1): 43–89

    Article  CAS  Google Scholar 

  196. Li J, Chang H, Ma L, Hao J, Yang R T. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review. Catalysis Today, 2011, 175(1): 147–156

    Article  CAS  Google Scholar 

  197. Liu C, Chen L, Li J, Ma L, Arandiyan H, Du Y, Xu J, Hao J. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 2012, 46(11): 6182–6189

    Article  CAS  Google Scholar 

  198. Balle P, Geiger B, Kureti S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust. Applied Catalysis B: Environmental, 2009, 85(3-4): 109–119

    Article  CAS  Google Scholar 

  199. Busca G, Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18(1-2): 1–36

    Article  CAS  Google Scholar 

  200. Dunn J P, Koppula P R, Stenger H G, Wachs I E. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts. Applied Catalysis B: Environmental, 1998, 19(2): 103–117

    Article  CAS  Google Scholar 

  201. Qu R, Gao X, Cen K, Li J. Relationship between structure and performance of a novel cerium-niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 2013, 142: 290–297

    Article  CAS  Google Scholar 

  202. Jiang H, Wang S, Wang C, Chen Y, Zhang M. Selective catalytic reduction of NOx with NH3 on Cu-BTC-derived catalysts: Influence of modulation and thermal treatment. Catalysis Surveys from Asia, 2018, 22(2): 95–104

    Article  CAS  Google Scholar 

  203. Jiang H, Zhou J, Wang C, Li Y, Chen Y, Zhang M. Effect of cosolvent and temperature on the structures and properties of Cu- MOF-74 in low-temperature NH3-SCR. Industrial & Engineering Chemistry Research, 2017, 56(13): 3542–3550

    Article  CAS  Google Scholar 

  204. Panahi P N, Salari D, Niaei A, Mousavi S M. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM. Journal of Industrial and Engineering Chemistry, 2013, 19(6): 1793–1799

    Article  CAS  Google Scholar 

  205. Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A. Selective catalytic reduction of NO with NH3 over HZSM-5- supported Fe–Cu nanocomposite catalysts: The Fe–Cu bimetallic effect. Applied Catalysis B: Environmental, 2014, 148: 520–531

    Article  CAS  Google Scholar 

  206. Dasireddy V D B C, Likozar B. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multiwalled carbon nanotubes (MWCNT). Chemical Engineering Journal, 2017, 326: 886–900

    Article  CAS  Google Scholar 

  207. Jouini H, Mejri I, Petitto C, Martinez-Ortigosa J, Vidal-Moya A, Mhamdi M, Blasco T, Delahay G. Characterization and NH3-SCR reactivity of Cu–Fe-ZSM-5 catalysts prepared by solid state ion exchange: The metal exchange order effect. Microporous and Mesoporous Materials, 2018, 260: 217–226

    Article  CAS  Google Scholar 

  208. Cao F, Chen J, Lyu C, Ni M, Gao X, Cen K. Synthesis, characterization and catalytic performances of Cu- and Mncontaining ordered mesoporous carbons for the selective catalytic reduction of NO with NH3. Catalysis Science & Technology, 2015, 5(2): 1267–1279

    Article  CAS  Google Scholar 

  209. Chen J, Cao F, Qu R, Gao X, Cen K. Bimetallic cerium-copper nanoparticles embedded in ordered mesoporous carbons as effective catalysts for the selective catalytic reduction of NO with NH3. Journal of Colloid and Interface Science, 2015, 456: 66–75

    Article  CAS  PubMed  Google Scholar 

  210. Spassova I, Khristova M, Nickolov R, Mehandjiev D. Novel application of depleted fullerene soot (DFS) as support of catalysts for low-temperature reduction of NO with CO. Journal of Colloid and Interface Science, 2008, 320(1): 186–193

    Article  CAS  PubMed  Google Scholar 

  211. Lu C Y, Tseng H H, Wey MY, Liu LY, Chuang K H. Effects of the ratio of Cu/Co and metal precursors on the catalytic activity over Cu—Co/Al2O3 prepared using the polyol process. Materials Science and Engineering B—Advanced Functional Solid-State Materials, 2009, 157(1-3): 105–112

    CAS  Google Scholar 

  212. Tseng H H, Lin H Y, Kuo Y F, Su Y T. Synthesis, characterization, and promoter effect of Cu–Zn/γ-Al2O3 catalysts on NO reduction with CO. Chemical Engineering Journal, 2010, 160(1): 13–19

    Article  CAS  Google Scholar 

  213. Ramirez-Garza R E, Rodriguez-Iznaga I, Simakov A, Farias M H, Castillon-Barraza F F. Cu–Ag/mordenite catalysts for NO reduction: Effect of silver on catalytic activity and hydrothermal stability. Materials Research Bulletin, 2018, 97: 369–378

    Article  CAS  Google Scholar 

  214. Zheng W, Lin J, Zhan Y, Wang H. Adsorption Characteristics of nitrate and phosphate from aqueous solution on zirconiumhexadecyltrimethylammonium chloride modified activated carbon. Environmental Science, 2015, 36(6): 2185–2194 (in Chinese)

    Google Scholar 

  215. Zhu J, Wang X, Shen J, Lin Y. Adsorption of nitrate and phosphate by MTAB-modified activated carbon. Chemical Industry and Engineering Progress, 2017, 36(7): 2676–2683 (in Chinese)

    Google Scholar 

  216. Schoeman J J, Steyn A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 2003, 155(1): 15–26

    Article  CAS  Google Scholar 

  217. Mereddy R, Chan A, Fanning K, Nirmal N, Sultanbawa Y. Betalain rich functional extract with reduced salts and nitrate content from red beetroot (Beta vulgaris L.) using membrane separation technology. Food Chemistry, 2017, 215: 311–317

    Article  CAS  PubMed  Google Scholar 

  218. Matos C T, Velizarov S, Crespo J G, Reis M A M. Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 2006, 40(2): 231–240

    Article  CAS  PubMed  Google Scholar 

  219. Primo O, Rivero M J, Urtiaga A M, Ortiz I. Nitrate removal from electro-oxidized landfill leachate by ion exchange. Journal of Hazardous Materials, 2009, 164(1): 389–393

    Article  CAS  PubMed  Google Scholar 

  220. Ye T, Zhang G, Wang K, Shuang C D, Li A M. Bioregeneration of anion exchange resin used in nitrate removal. Environmental Science & Technology, 2018, 39(8): 3753–3758 (in Chinese)

    Google Scholar 

  221. Yi W, Sakamoto Y, Kamiya Y. Remediation of actual groundwater polluted with nitrate by the catalytic reduction over copperpalladium supported on active carbon. Applied Catalysis A, General, 2009, 361(1-2): 123–129

    Article  CAS  Google Scholar 

  222. Chen S, Zhang H, Wu L, Zhao Y, Huang C, Ge M, Liu Z. Controllable synthesis of supported Cu–M (M= Pt, Pd, Ru, Rh) bimetal nanocatalysts and their catalytic performances. Journal of Materials Chemistry, 2012, 22(18): 9117–9122

    Article  CAS  Google Scholar 

  223. Soares O S G P, Orfao J J M, Pereira M F R. Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Applied Catalysis B: Environmental, 2009, 91(1-2): 441–448

    Article  CAS  Google Scholar 

  224. Soares O S G P, Orfao J J M, Pereira M F R. Nitrate reduction catalyzed by Pd–Cu and Pt–Cu supported on different carbon materials. Catalysis Letters, 2010, 139(3-4): 97–104

    Article  CAS  Google Scholar 

  225. Sakamoto Y, Kamiya Y, Okuhara T. Selective hydrogenation of nitrate to nitrite in water over Cu–Pd bimetallic clusters supported on active carbon. Journal of Molecular Catalysis A: Chemical, 2006, 250(1-2): 80–86

    Article  CAS  Google Scholar 

  226. Wang Y, Kasuga T, Mikami I, Kamiya Y, Okuhara T. Palladiumcopper/hydrophobic active carbon as a highly active and selective catalyst for hydrogenation of nitrate in water. Chemistry Letters, 2007, 36(8): 994–995

    Article  Google Scholar 

  227. Yoshinaga Y, Akita T, Mikami I, Okuhara T. Hydrogenation of nitrate in water to nitrogen over Pd–Cu supported on active carbon. Journal of Catalysis, 2002, 207(1): 37–45

    Article  CAS  Google Scholar 

  228. Fan J, Xu H, Lv M, Wang J, Teng W, Ran X, Gou X,Wang X, Sun Y, Yang J. Mesoporous carbon confined palladium-copper alloy composites for high performance nitrogen selective nitrate reduction electrocatalysis. New Journal of Chemistry, 2017, 41 (6): 2349–2357

    Article  CAS  Google Scholar 

  229. Bae S, Jung J, Lee W. The effect of pH and zwitterionic buffers on catalytic nitrate reduction by TiO2-supported bimetallic catalyst. Chemical Engineering Journal, 2013, 232: 327–337

    Article  CAS  Google Scholar 

  230. Wang Q, Wang W, Yan B, Shi W, Cui F, Wang C. Well-dispersed Pd–Cu bimetals in TiO2 nanofiber matrix with enhanced activity and selectivity for nitrate catalytic reduction. Chemical Engineering Journal, 2017, 326: 182–191

    Article  CAS  Google Scholar 

  231. Jung J, Bae S, Lee W. Nitrate reduction by maghemite supported Cu–Pd bimetallic catalyst. Applied Catalysis B: Environmental, 2012, 127: 148–158

    Article  CAS  Google Scholar 

  232. Hamid S, Bae S, Lee W, Amin M T, Alazba A A. Catalytic nitrate removal in continuous bimetallic Cu–Pd/nanoscale zerovalent iron system. Industrial & Engineering Chemistry Research, 2015, 54 (24): 6247–6257

    Article  CAS  Google Scholar 

  233. Chen H Y, Lo S L, Ou H H. Catalytic hydrogenation of nitrate on Cu–Pd supported on titanate nanotube and the experiment after aging, sulfide fouling and regeneration procedures. Applied Catalysis B: Environmental, 2013, 142: 65–71

    Article  CAS  Google Scholar 

  234. Gutés A, Carraro C, Maboudian R. Nitrate amperometric sensor in neutral pH based on Pd nanoparticles on epoxy-copper electrodes. Electrochimica Acta, 2013, 103: 38–43

    Article  CAS  Google Scholar 

  235. Su J F, Ruzybayev I, Shah I, Huang C P. The electrochemical reduction of nitrate over micro-architectured metal electrodes with stainless steel scaffold. Applied Catalysis B: Environmental, 2016, 180: 199–209

    Article  CAS  Google Scholar 

  236. Liu J, Wu Q, Huang F, Zhang H, Xu S, Huang W, Li Z. Facile preparation of a variety of bimetallic dendrites with high catalytic activity by two simultaneous replacement reactions. RSC Advances, 2013, 3(34): 14312–14321

    Article  CAS  Google Scholar 

  237. Barman B K, Nanda K K. Uninterrupted galvanic reaction for scalable and rapid synthesis of metallic and bimetallic sponges/ dendrites as efficient catalysts for 4-nitrophenol reduction. Dalton Transactions (Cambridge, England), 2015, 44(9): 4215–4222

    Article  CAS  Google Scholar 

  238. Najdovski I, Selvakannan P R, O’Mullane A P. Cathodic corrosion of Cu substrates as a route to nanostructured Cu/M (M = Ag, Au, Pd) surfaces. ChemElectroChem, 2015, 2(1): 106–111

    Article  CAS  Google Scholar 

  239. Saikia H, Borah B J, Yamada Y, Bharali P. Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium. Journal of Colloid and Interface Science, 2017, 486: 46–57

    Article  CAS  PubMed  Google Scholar 

  240. Mallikarjuna K, Kim H. Synthesis and characterization of highly active Cu/Pd bimetallic nanostructures. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2017, 535: 194–200

    Article  CAS  Google Scholar 

  241. Sun Y, Zhang F, Xu L, Yin Z, Song X. Roughness-controlled copper nanowires and Cu nanowires-Ag heterostructures: Synthesis and their enhanced catalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(43): 18583–18592

    Article  CAS  Google Scholar 

  242. Wu W, Lei M, Yang S, Zhou L, Liu L, Xiao X, Jiang C, Roy VA L. A one-pot route to the synthesis of alloyed Cu/Ag bimetallic nanoparticles with different mass ratios for catalytic reduction of 4- nitrophenol. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3450–3455

    Article  CAS  Google Scholar 

  243. Xu S, Li H, Wang L, Yue Q, Li R, Xue Q, Zhang Y, Liu J. Synthesis of carbon-encapsulated Cu–Ag dimetallic nanoparticles and their recyclable superior catalytic activity towards 4- nitrophenol reduction. European Journal of Inorganic Chemistry, 2015, 28(28): 4731–4736

    Article  CAS  Google Scholar 

  244. Khan F U, Asimullah S B, Khan T, Kamal AM, Asiri I U, Khan K, Akhtar. Novel combination of zero-valent Cu and Ag nanoparticles@ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. International Journal of Biological Macromolecules, 2017, 102: 868–877

    Article  PubMed  CAS  Google Scholar 

  245. Liang Y, Chen Z, Yao W, Wang P, Yu S, Wang X. Decorating of Ag and CuO on Cu nanoparticles for enhanced high catalytic activity to the degradation of organic pollutants. Langmuir, 2017, 33(31): 7606–7614

    Article  CAS  PubMed  Google Scholar 

  246. Hareesh H N, Minchitha K U, Venkatesh K, Nagaraju N, Kathyayini N. Environmentally benign selective hydrogenation of α, β-unsaturated aldehydes and reduction of aromatic nitro compounds using Cu based bimetallic nanoparticles supported on multiwalled carbon nanotubes and mesoporous carbon. RSC Advances, 2016, 6(85): 82359–82369

    Article  CAS  Google Scholar 

  247. Sharma M, Hazra S, Basu S. Synthesis of heterogeneous Ag–Cu bimetallic monolith with different mass ratios and their performances for catalysis and antibacterial activity. Advanced Powder Technology, 2017, 28(11): 3085–3094

    Article  CAS  Google Scholar 

  248. Ismail M, Khan M I, Khan S B, Khan M A, Akhtar K, Asiri A M. Green synthesis of plant supported Cu–Ag and Cu–Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. Journal of Molecular Liquids, 2018, 260: 78–91

    Article  CAS  Google Scholar 

  249. Najdovski I, Selvakannan P, Bhargava S K, O’Mullane A P. Formation of nanostructured porous Cu–Au surfaces: The influence of cationic sites on (electro)-catalysis. Nanoscale, 2012, 4(20): 6298–6306

    Article  CAS  PubMed  Google Scholar 

  250. Cai R, Ellis P R, Yin J, Liu J, Brown C M, Griffin R, Chang G, Yang D, Ren J, Cooke K, Bishop P T, Theis W, Palmer R E. Performance of preformed Au/Cu nanoclusters deposited on MgO powders in the catalytic reduction of 4-nitrophenol in solution. Small, 2018, 14(13): 1703734

    Article  CAS  Google Scholar 

  251. Sun L, Deng Y, Yang Y, Xu Z, Xie K, Liao L. Preparation and catalytic activity of magnetic bimetallic nickel/copper nanowires. RSC Advances, 2017, 7(29): 17781–17787

    Article  CAS  Google Scholar 

  252. El Fadl F I A, Mahmoud G A, Badawy N A, Kamal F H, Mohamed A A. Pectin-based hydrogels and its ferrite nanocomposites for removal of nitro compounds. Desalination and Water Treatment, 2017, 90: 283–293

    Article  CAS  Google Scholar 

  253. Shesterkina A A, Shuvalova E V, Kirichenko O A, Strelkova A A, Nissenbaum V D, Kapustin G I, Kustov LM. Application of silicasupported Fe–Cu nanoparticles in the selective hydrogenation of p-dinitrobenzene to p-phenylenediamine. Russian Journal of Physical Chemistry A, 2017, 91(2): 201–204

    Article  CAS  Google Scholar 

  254. Karami S, Zeynizadeh B, Shokri Z. Cellulose supported bimetallic Fe–Cu nanoparticles: A magnetically recoverable nanocatalyst for quick reduction of nitroarenes to amines in water. Cellulose (London, England), 2018, 25(6): 3295–3305

    CAS  Google Scholar 

  255. Ge Y, Gao T, Wang C, Shah Z H, Lu R, Zhang S. Highly efficient silica coated CuNi bimetallic nanocatalyst from reverse microemulsion. Journal of Colloid and Interface Science, 2017, 491: 123–132

    Article  CAS  PubMed  Google Scholar 

  256. Yang C, Xue W, Yin H, Lu Z, Wang A, Shen L, Jiang Y. Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H2 to 3- amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/ nickel nanoparticles. New Journal of Chemistry, 2017, 41(9): 3358–3366

    Article  CAS  Google Scholar 

  257. Abay A K, Chen X, Kuo D H. Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4- nitrophenol, methyl blue, and rhodamine-B organic pollutants. New Journal of Chemistry, 2017, 41(13): 5628–5638

    Article  CAS  Google Scholar 

  258. Rana S, Jonnalagadda S B. A facile synthesis of Cu–Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of p-nitrophenol and cinnamaldehyde. RSC Advances, 2017, 7(5): 2869–2879

    Article  CAS  Google Scholar 

  259. Wang M S, Zou P P, Huang Y L, Wang Y Y, Dai L Y. Threedimensional graphene-based Pt–Cu nanoparticles-containing composite as highly active and recyclable catalyst. Acta Physico- Chimica Sinica, 2017, 33(6): 1230–1235 (in Chinese)

    Article  CAS  Google Scholar 

  260. Chen Z, Zhao B, Fu X Z, Sun R, Wong C P. CuO nanorods supported Pd nanoparticles as high performance electrocatalysts for glucose detection. Journal of Electroanalytical Chemistry, 2017, 807: 220–227

    Article  CAS  Google Scholar 

  261. Huang J, Zhu Y, Zhong H, Yang X, Li C. Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Applied Materials & Interfaces, 2014, 6(10): 7055–7062

    Article  CAS  Google Scholar 

  262. You H, Zhang L, Jiang Y, Shao T, Li M, Gong J. Bubble-supported engineering of hierarchical CuCO2S4 hollow spheres for enhanced electrochemical performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(13): 5235–5240

    Google Scholar 

  263. Xu H, Miao B, Zhang M, Chen Y, Wang L. Mechanism of C–C and C–H bond cleavage in ethanol oxidation reaction on Cu2O (111): A DFT-D and DFT plus U study. Physical Chemistry Chemical Physics, 2017, 19(38): 26210–26220

    Article  CAS  PubMed  Google Scholar 

  264. Wu Z, Zhang M, Jiang H, Zhong C J, Chen Y, Wang L. Competitive C–C and C–H bond scission in the ethanol oxidation reaction on Cu(100) and the effect of an alkaline environment. Physical Chemistry Chemical Physics, 2017, 19(23): 15444–15453

    Article  CAS  PubMed  Google Scholar 

  265. Lin J F, Mohl M, Toth G, Puskas R, Kukovecz A, Kordas K. Electrocatalytic properties of carbon nanotubes decorated with copper and bimetallic CuPd nanoparticles. Topics in Catalysis, 2015, 58(14-17): 1119–1126

    Article  CAS  Google Scholar 

  266. Mirza S, Chen H, Gu Z G, Zhang J. Electrooxidation of Pd–Cu NP loaded porous carbon derived from a Cu-MOF. RSC Advances, 2018, 8(4): 1803–1807

    Article  CAS  Google Scholar 

  267. Zhang J, Feng A, Bai J, Tan Z, Shao W, Yang Y, Hong W, Xiao Z. One-pot synthesis of hierarchical flower-like Pd–Cu alloy support on graphene towards ethanol oxidation. Nanoscale Research Letters, 2017, 12(1): 521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Maswadeh Y, Shan S, Prasai B, Zhao Y, Xie Z H, Wu Z, Luo J, Ren Y, Zhong C J, Petkov V. Charting the relationship between phase type-surface area-interactions between the constituent atoms and oxygen reduction activity of Pd–Cu nanocatalysts inside fuel cells by in operando high-energy X-ray diffraction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(16): 7355–7365

    Article  CAS  Google Scholar 

  269. Xiong Y, Ye W, Chen W, Wu Y, Xu Q, Yan Y, Zhang H, Wu J, Yang D. PdCu alloy nanodendrites with tunable composition as highly active electrocatalysts for methanol oxidation. RSC Advances, 2017, 7(10): 5800–5806

    Article  CAS  Google Scholar 

  270. Yan B, Wang C, Xu H, Zhang K, Li S, Du Y. Facile synthesis of a porous Pd/Cu alloy and its enhanced performance toward methanol and formic acid electrooxidation. ChemPlusChem, 2017, 82(8): 1121–1128

    Article  CAS  PubMed  Google Scholar 

  271. Hong W, Wang J, Wang E. Scalable synthesis of Cu-based ultrathin nanowire networks and their electrocatalytic properties. Nanoscale, 2016, 8(9): 4927–4932

    Article  CAS  PubMed  Google Scholar 

  272. Pryadchenko V V, Belenov S V, Shemet D B, Volochaev V A, Srabionyan V V, Avakyan L A, Tabachkova N Y, Guterman V E, Bugaev L A. The effect of thermal treatment on the atomic structure of core-shell PtCu nanoparticles in PtCu/C electrocatalysts. Physics of the Solid State, 2017, 59(8): 1666–1673

    Article  CAS  Google Scholar 

  273. Wu S, Zhu Y, Huo Y, Luo Y, Zhang L, Wan Y, Nan B, Cao L, Wang Z, Li M, Yang M, Cheng H, Lu Z. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Science China- Materials, 2017, 60(7): 654–663

    Article  CAS  Google Scholar 

  274. Zhang H M, Wang Y F, Kwok Y H, Wu Z C, Xia D H, Leung D Y C. A direct ammonia microfluidic fuel cell using NiCu nanoparticles supported on carbon nanotubes as an electrocatalyst. ChemSusChem, 2018, 11(17): 2889–2897

    Article  CAS  PubMed  Google Scholar 

  275. Zhang N, Chen F, Wu X, Wang Q, Qaseem A, Xia Z. The activity origin of core-shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(15): 7043–7054

    CAS  Google Scholar 

  276. Duan D, You X, Liang J, Liu S, Wang Y. Carbon supported Cu–Pd nanoparticles as anode catalyst for direct borohydride-hydrogen peroxide fuel cells. Electrochimica Acta, 2015, 176: 1126–1135

    Article  CAS  Google Scholar 

  277. Duan D, Liu H, You X, Wei H, Liu S. Anodic behavior of carbon supported Cu@Ag core-shell nanocatalysts in direct borohydride fuel cells. Journal of Power Sources, 2015, 293: 292–300

    Article  CAS  Google Scholar 

  278. Cheng H, Li M L, Su C Y, Li N, Liu Z Q. Cu–Co bimetallic oxide quantum dot decorated nitrogen-doped carbon nanotubes: A highefficiency bifunctional oxygen electrode for Zn-Air batteries. Advanced Functional Materials, 2017, 27(30): 1701833

    Article  CAS  Google Scholar 

  279. Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. Journal of the American Chemical Society, 2017, 139(49): 18093–18100

    Article  CAS  PubMed  Google Scholar 

  280. Wu D, Dong C, Wu D, Fu J, Liu H, Hu S, Jiang Z, Qiao S Z, Du X W. Cuprous ions embedded in ceria lattice for selective and stable electrochemical reduction of carbon dioxide to ethylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(20): 9373–9377

    Article  CAS  Google Scholar 

  281. Hoshi N, Kato M, Hori Y. Electrochemical reduction of CO2 on single crystal electrodes of silver Ag(111), Ag(100) and Ag(110). Journal of Electroanalytical Chemistry, 1997, 440(1-2): 283–286

    Article  CAS  Google Scholar 

  282. Lee S, Park G, Lee J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catalysis, 2017, 7(12): 8594–8604

    Article  CAS  Google Scholar 

  283. Luo W, Xie W, Mutschler R, Oveisi E, De Gregorio G L, Buonsanti R, Zuttel A. Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catalysis, 2018, 8 (7): 6571–6581

    Article  CAS  Google Scholar 

  284. Larrazábal G O, Shinagawa T, Martin A J, Perez-Ramirez J. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nature Communications, 2018, 9(1): 1477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Wang C, Cao M, Jiang X, Wang M, Shen Y. A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271: 544–550

    Article  CAS  Google Scholar 

  286. Yang P, Zhao Z J, Chang X, Mu R, Zha S, Zhang G, Gong J. The functionality of surface hydroxy groups on the selectivity and activity of carbon dioxide reduction over cuprous oxide in aqueous solutions. Angewandte Chemie International Edition, 2018, 57 (26): 7724–7728

    Article  CAS  PubMed  Google Scholar 

  287. Zhu W, Zhang L, Yang P, Hu C, Dong H, Zhao Z J, Mu R, Gong J. Formation of enriched cacancies for enhanced CO2 electrocatalytic reduction over AuCu alloys. ACS Energy Letters, 2018, 3(9): 2144–2149

    Article  CAS  Google Scholar 

  288. Ren D, Ang B S H, Yeo B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catalysis, 2016, 6(12): 8239–8247

    Article  CAS  Google Scholar 

  289. Ma S, Sadakiyo M, Heima M, Luo R, Haasch R T, Gold J I, Yamauchi M, Kenis P J A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. Journal of the American Chemical Society, 2017, 139(1): 47–50

    Article  CAS  PubMed  Google Scholar 

  290. Zhu W, Zhang L, Yang P, Chang X, Dong H, Li A, Hu C, Huang Z, Zhao Z J, Gong J. Morphological and compositional design of Pd–Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. Small, 2018, 14(7): 1703314–1703321

    Article  CAS  Google Scholar 

  291. Todoroki N, Yokota N, Nakahata S, Nakamura H, Wadayama T. Electrochemical reduction of CO2 on Ni- and Pt-epitaxially grown Cu(111) surfaces. Electrocatalysis (New York), 2016, 7(1): 97–103

    CAS  Google Scholar 

  292. Mandegarzad S, Raoof J B, Hosseini S R, Ojani R. Cu–Pt bimetallic nanoparticles supported metal organic frameworkderived nanoporous carbon as a catalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 190: 729–736

    Article  CAS  Google Scholar 

  293. Mandegarzad S, Raoof J B, Hosseini S R, Ojani R. MOF-derived Cu–Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis. Applied Surface Science, 2018, 436: 451–459

    Article  CAS  Google Scholar 

  294. Amiripour F, Azizi S N, Ghasemi S. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for Chick for determination of hydrazine. Biosensors & Bioelectronics, 2018, 107: 111–117

    Article  CAS  Google Scholar 

  295. Tran D T, Hoa V H, Tuan L H, Kim N H, Lee J H. Cu–Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosensors & Bioelectronics, 2018, 119: 134–140

    Article  CAS  Google Scholar 

  296. Thota R, Sundari S, Berchmans S, Ganesh V. Silver-copper bimetallic flexible electrodes prepared using a galvanic replacement reaction and their applications. ChemistrySelect, 2017, 2(6): 2114–2122

    Article  CAS  Google Scholar 

  297. Lee J W, Liu X, Mou C Y. Selective hydrogenation of acetylene over SBA-15 supported Au–Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914

    Article  CAS  Google Scholar 

  298. Zhang R G, Zhao B, Ling L X, Wang A J, Russell C K, Wang B J, Fan M H. Cost-effective palladium-doped Cu bimetallic materials to tune selectivity and activity by using doped atom ensembles as active sites for efficient removal of acetylene from ethylene. ChemCatChem, 2018, 10(11): 2424–2432

    Article  CAS  Google Scholar 

  299. McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/ Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135

    Article  CAS  Google Scholar 

  300. Fan S B, Kouotou P M, Weng J J, Pan G F, Tian Z Y. Investigation on the structure stability and catalytic activity of Cu–Co binary oxides. Proceedings of the Combustion Institute, 2017, 36(3): 4375–4382

    Article  CAS  Google Scholar 

  301. Zhang L, Mao J B, Li S M, Yin J M, Sun X D, Guo XW, Song C S, Zhou J X. Hydrogenation of levulinic acid into γ-valerolactone over in situ reduced CuAg bimetallic catalyst: Strategy and mechanism of preventing Cu leaching. Applied Catalysis B: Environmental, 2018, 232: 1–10

    Article  CAS  Google Scholar 

  302. Verma D, Insyani R, Cahyadi H S, Park J, Kim S M, Cho J M, Bae J W, Kim J. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals. Green Chemistry, 2018, 20(14): 3253–3270

    Article  CAS  Google Scholar 

  303. Shi Z, Yang H, Gao P, Li X, Zhong L, Wang H, Liu H, Wei W, Sun Y. Direct conversion of CO2 to long-chain hydrocarbon fuels over K-promoted CoCu/TiO2 catalysts. Catalysis Today, 2018, 311: 65–73

    Article  CAS  Google Scholar 

  304. Wei Y, Chang X, Wang T, Li C, Gong J. A low-cost NiO hole transfer layer for ohmic back contact to Cu2O for photoelectrochemical water splitting. Small, 2017, 13(39): 1702007

    Article  CAS  Google Scholar 

  305. Chang X, Wang T, Zhang P, Wei Y, Zhao J, Gong J. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angewandte Chemie International Edition, 2016, 55(31): 8840–8845

    Article  CAS  PubMed  Google Scholar 

  306. Bashiri R, Mohamed N M, Kait C F, Sufian S. Study on synthesis and sharacterization of Cu–Ni doped TiO2 by sol-gel hydrothermal. Advanced Materials Research, 2014, 925: 248–252

    Article  CAS  Google Scholar 

  307. Bashiri R, Mohamed N M, Kait C F, Sufian S. Effect of heat treatment on the physical properties of bimetallic doped catalyst, Cu–Ni/TiO2. In: Proceedings of the 23rd Scientific Conference of Microscopy Society Malaysia, 2015, 1669: 020055

    Google Scholar 

  308. Bashiri R, Mohamed N M, Kait C F, Sufian S, Khatani M, Hanaei H. Effect of preparation parameters on optical properties of Cu and Ni doped TiO2 photocatalyst. In: Proceeding of 4th International Conference on Process Engineering and Advanced Materials, 2016, 148: 151–157

    Google Scholar 

  309. Bashiri R, Mohamed N M, Kait C F, Sufian S, Kakooei S, Khatani M, Gholami Z. Optimization hydrogen production over visible light-driven titania-supported bimetallic photocatalyst from water photosplitting in tandem photoelectrochemical cell. Renewable Energy, 2016, 99: 960–970

    Article  CAS  Google Scholar 

  310. Bashiri R, Mohamed N M, Kait C F, Sufian S, Khatani M. Enhanced hydrogen production over incorporated Cu and Ni into titanic photocatalyst in glycerol-based photoelectrochemical cell: Effect of total metal loading and calcination temperature. International Journal of Hydrogen Energy, 2017, 42(15): 9553–9566

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21576205). The authors also thank Prof. Jinlong Gong in School of Chemical Engineering and Technology, Tianjin University for his helpful suggestions and comments in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinli Zhang or Minhua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wang, Y., Ma, T. et al. Mechanistic understanding of Cu-based bimetallic catalysts. Front. Chem. Sci. Eng. 14, 689–748 (2020). https://doi.org/10.1007/s11705-019-1902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1902-4

Keywords

Navigation