Skip to main content

Advertisement

Log in

Novel Sensing Technologies During the Food Drying Process

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Instantly sensing the food quality attributes is a prerequisite to regulate the drying process for final product quality improvement. Novel sensing technologies have been “pushed” to food drying engineering from other research disciplines. Electronic nose, computer vision, hyperspectral imaging, near-infrared, nuclear magnetic resonance, and dielectric properties have been “transplanted” for this purpose. Various physicochemical attributes of food quality, including flavors, moisture contents, colors, shapes, texture, and chemical contents, have been sensed during the food drying process. Sun and solar drying, hot air convective drying, freeze drying, and microwave drying have been involved in these attempts. Numerous data processing and analysis techniques have been employed to make clear the meaning of multivariate variables for the above technologies. With the assistance of these technologies, a great diversity of drying processes have been modulated and food product quality had been improved. To promote their industrial application, more research is required to be conducted and more practical sensing method development is suggested along this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural networks

AOTF-NIR:

Acousto-optic tunable filter-near-infrared

BPNN:

Backpropagation neural network

CV:

Computer vision

DS:

Dielectric spectroscopy

EM:

Electromagnetic

E-nose:

Electronic nose

FBRM:

Focused beam reflectance measurement

FDA:

Fisher discriminant analysis

FID:

Flame ionization detector

FL:

Fuzzy logic

FT-NIR :

Fourier transform NIR

GLCM:

Gray-level co-occurrence matrix

HSI:

Hyperspectral imaging

HS-SPME:

Headspace solid phase micro-extraction

LSD:

Least significant difference

LS-SVM:

Least squares support vector machines

MLR:

Multiple linear regression

MNF:

Minimum noise fraction

MOS:

Metal oxide semiconductor

MSC:

Multiple scattering correction

NIR:

Near-infrared spectroscopy

NMR:

Nuclear magnetic resonance

PAT:

Process analytical technology

PCA:

Principal component analysis

PCR:

Principal component regression

PLS:

Partial least squares

PEPT:

Positron emission particle tracking

PLS-DA:

Partial least squares discriminant analysis

PLSR:

Partial least square regression

QMB:

Quartz microbalance

ROI:

Region of interest

SFV:

Spatial filter velocimetry

SL:

Statistical learning

SNV:

Standard normal variate

TS-HSI:

Time series hyperspectral imaging

VOCs:

Volatile organic compounds

References

  1. Musielak G, Mierzwa D, Kroehnke J (2016) Food drying enhancement by ultrasound—a review. Trends Food Sci Technol 56:126–141

    Article  CAS  Google Scholar 

  2. Su WH, He HJ, Sun DW (2017) Non-destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: a review. Crit Rev Food Sci Nutr 57:1039–1051

    Article  CAS  PubMed  Google Scholar 

  3. Bradford KJ, Dahal P, Van Asbrouck J, Kunusoth K, Bello P, Thompson J, Wu F (2018) The dry chain: reducing postharvest losses and improving food safety in humid climates. Trends Food Sci Technol 71:84–93

    Article  CAS  Google Scholar 

  4. Sablani SS, Syamaladevi RM, Swanson BG (2010) A review of methods, data and applications of state diagrams of food systems. Food Eng Rev 2:168–203

    Article  CAS  Google Scholar 

  5. Li Z, Raghavan GSV, Wang N, Gariepy Y (2009) Real-time, volatile-detection-assisted control for microwave drying. Comput Electron Agric 69:177–184

    Article  Google Scholar 

  6. Moses JA, Norton T, Alagusundaram K, Tiwari BK (2014) Novel drying techniques for the food industry. Food Eng Rev 6:43–55

    Article  Google Scholar 

  7. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Eng 49:311–319

    Article  Google Scholar 

  8. An K, Zhao D, Wang Z, Wu J, Xu Y, Xiao G (2016) Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem 197:1292–1300

    Article  CAS  PubMed  Google Scholar 

  9. Pei F, Yang W, Ma N, Fang Y, Zhao L, An X, Xin Z, Hu Q (2016) Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC-MS and electronic nose. LWT Food Sci Technol 72:343–350

    Article  CAS  Google Scholar 

  10. Huang LL, Zhang M, Wang LP, Mujumdar AS, Sun DF (2012) Influence of combination drying methods on composition, texture, aroma and microstructure of apple slices. LWT Food Sci Technol 47:183–188

    Article  CAS  Google Scholar 

  11. Nicolas JJ, Richardforget FC, Goupy PM, Amiot MJ, Aubert SY (1994) Enzymatic browning reactions in apple and apple products. Crit Rev Food Sci Nutr 34:109–157

    Article  CAS  PubMed  Google Scholar 

  12. Oliveira SM, Brandao TRS, Silva CLM (2016) Influence of drying processes and pretreatments on nutritional and bioactive characteristics of dried vegetables: a review. Food Eng Rev 8:134–163

    Article  CAS  Google Scholar 

  13. Yang WJ, Yu J, Pei F, Mariga AM, Ma N, Fang Y, Hu QH (2016) Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose. Food Chem 196:860–866

    Article  CAS  PubMed  Google Scholar 

  14. Freire FB, Vieira GNA, Freire JT, Mujumdar AS (2014) Trends in modeling and sensing approaches for drying control. Dry Technol 32:1524–1532

    Article  Google Scholar 

  15. Jin W, Mujumdar AS, Zhang M, Shi W (2018) Novel drying techniques for spices and herbs: a review. Food Eng Rev 10:34–45

    Article  CAS  Google Scholar 

  16. Su Y, Zhang M, Mujumdar AS (2015) Recent developments in smart drying technology. Dry Technol 33:260–276

    Article  Google Scholar 

  17. Cögüs F. The effect of movement of solutes on Millard reaction during drying. Ph.D. thesis 1994; Leeds University, Leeds

  18. Basunia M, Abe T (2001) Thin-layer solar drying characteristics of rough rice under natural convection. J Food Eng 47:295–301

    Article  Google Scholar 

  19. Aguilera JM, Chiralt A, Fito P (2003) Food dehydration and product structure. Trends Food Sci Technol 14:432–437

    Article  CAS  Google Scholar 

  20. Janjai S, Bala B (2012) Solar drying technology. Food Eng Rev 4:16–54

    Article  Google Scholar 

  21. Panwar N, Kaushik S, Kothari S (2012) State of the art on solar drying technology: a review. Int J Renew Energy Technol 3:107–141

    Article  Google Scholar 

  22. Leon MA, Kumar S, Bhattacharya S (2002) A comprehensive procedure for performance evaluation of solar food dryers. Renew Sust Energ Rev 6:367–393

    Article  Google Scholar 

  23. Ratti C, Mujumdar A (1997) Solar drying of foods: modeling and numerical simulation. Sol Energy 60:151–157

    Article  Google Scholar 

  24. Gupta A, Shukla S, Srivastava A (2013) Analysis of solar drying unit with phase change material storage systems. Int J Agile Syst Manag 6:164–174

    Article  Google Scholar 

  25. Xiao Q, Chen J, Ouyang S, Shao P, Qin F. Design and realization of the hardware for an intelligent solar drying system. In 2014 13th international conference on Control Automation Robotics & Vision (ICARCV). 2014. IEEE

  26. Ciurzyńska A, Lenart A (2011) Freeze-drying-application in food processing and biotechnology—a review. Pol J Food Nutr Sci 61:165–171

    Article  Google Scholar 

  27. Claussen I, Ustad T, Strømmen I, Walde P (2007) Atmospheric freeze drying—a review. Dry Technol 25:947–957

    Article  CAS  Google Scholar 

  28. Barresi AA, Velardi SA, Pisano R, Rasetto V, Vallan A, Galan M (2009) In-line control of the lyophilization process. A gentle PAT approach using software sensors. Int J Refrig 32:1003–1014

    Article  CAS  Google Scholar 

  29. Vadivambal R, Jayas D (2010) Non-uniform temperature distribution during microwave heating of food materials—a review. Food Bioprocess Technol 3:161–171

    Article  Google Scholar 

  30. Araszkiewicz M, Koziol A, Lupinska A, Lupinski M (2007) IR technique for studies of microwave assisted drying. Dry Technol 25:569–574

    Article  CAS  Google Scholar 

  31. Li Z, Raghavan G, Wang N, Vigneault C (2011) Drying rate control in the middle stage of microwave drying. J Food Eng 104:234–238

    Article  Google Scholar 

  32. Xu W, Song C, Li Z, Song F, Hu S, Li J, Zhu G, Raghavan GV (2018) Temperature gradient control during microwave combined with hot air drying. Biosyst Eng 169:175–187

    Article  Google Scholar 

  33. Song C, Wu T, Li Z, Li J, Chen H (2018) Analysis of the heat transfer characteristics of blackberries during microwave vacuum heating. J Food Eng 223:70–78

    Article  CAS  Google Scholar 

  34. Pu H, Li Z, Hui J, Raghavan GV (2016) Effect of relative humidity on microwave drying of carrot. J Food Eng 190:167–175

    Article  Google Scholar 

  35. Afzal T, Abe T (1998) Diffusion in potato during far infrared radiation drying. J Food Eng 37:353–365

    Article  Google Scholar 

  36. Riadh MH, Ahmad SAB, Marhaban MH, Soh AC (2015) Infrared heating in food drying: an overview. Dry Technol 33:322–335

    Article  CAS  Google Scholar 

  37. Ranjan R, Irudayaraj J, Jun S (2002) Simulation of infrared drying process. Dry Technol 20:363–379

    Article  CAS  Google Scholar 

  38. De la Fuente-Blanco S, De Sarabia ER-F, Acosta-Aparicio V, Blanco-Blanco A, Gallego-Juárez J (2006) Food drying process by power ultrasound. Ultrasonics 44:e523–e527

    Article  PubMed  Google Scholar 

  39. Siucińska K, Konopacka D (2014) Application of ultrasound to modify and improve dried fruit and vegetable tissue: a review. Dry Technol 32:1360–1368

    Article  CAS  Google Scholar 

  40. Gallego-Juárez JA, Riera E, De la Fuente BS, Rodríguez-Corral G, Acosta-Aparicio VM, Blanco A (2007) Application of high-power ultrasound for dehydration of vegetables: processes and devices. Dry Technol 25:1893–1901

    Article  Google Scholar 

  41. Rocha RP, Melo EC, Raduenz LL (2011) Influence of drying process on the quality of medicinal plants: a review. J Med Plant Res 5:7076–7084

    Google Scholar 

  42. Bouraoui M, Richard P, Fichtali J (1993) A review of moisture-content determination in foods using microwave-oven drying. Food Res Int 26:49–57

    Article  Google Scholar 

  43. Figiel A, Michalska A (2017) Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. Int J Mol Sci 18(1):71

    Article  CAS  Google Scholar 

  44. Raponi F, Moscetti R, Monarca D, Colantoni A, Massantini R (2017) Monitoring and optimization of the process of drying fruits and vegetables using computer vision: a review. Sustainability 9:1–27

    Article  CAS  Google Scholar 

  45. Aghbashlo M, Sotudeh-Gharebagh R, Zarghami R, Mujumdar AS, Mostoufi N (2014) Measurement techniques to monitor and control fluidization quality in fluidized bed dryers: a review. Dry Technol 32:1005–1051

    Article  CAS  Google Scholar 

  46. Mujumdar AS (2007) An overview of innovation in industrial drying: current status and R&D needs. Transp Porous Media 66:3–18

    Article  Google Scholar 

  47. Mujumdar AS (2004) Research and development in drying: recent trends and future prospects. Dry Technol 22:1–26

    Article  Google Scholar 

  48. Burggraeve A, Monteyne T, Vervaet C, Remon JP, De Beer T (2013) Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm 83:2–15

    Article  CAS  PubMed  Google Scholar 

  49. De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C (2011) Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm 417:32–47

    Article  PubMed  CAS  Google Scholar 

  50. Peris M, Escuder-Gilabert L (2013) On-line monitoring of food fermentation processes using electronic noses and electronic tongues: a review. Anal Chim Acta 804:29–36

    Article  CAS  PubMed  Google Scholar 

  51. Hines EL, Llobet E, Gardner JW (1999) Electronic noses: a review of signal processing techniques. IEE Proc Circ Dev Syst 146:297–310

    Article  Google Scholar 

  52. Gardner JW, Bartlett PN (1994) A brief-history of electronic nose. Sensors Actuators B Chem 18:211–220

    CAS  Google Scholar 

  53. Loutfi A, Coradeschi S, Mani GK, Shankar P, Rayappan JBB (2015) Electronic noses for food quality: a review. J Food Eng 144:103–111

    Article  CAS  Google Scholar 

  54. Santonico M, Bellincontro A, De Santis D, Di Natale C, Mencarelli F (2010) Electronic nose to study postharvest dehydration of wine grapes. Food Chem 121:789–796

    Article  CAS  Google Scholar 

  55. de Lerma NL, Moreno J, Peinado RA (2014) Determination of the optimum sun-drying time for Vitis vinifera L. cv. Tempranillo grapes by E-nose analysis and characterization of their volatile composition. Food Bioprocess Technol 7:732–740

    Article  CAS  Google Scholar 

  56. Kiani S, Minaei S, Ghasemi-Varnamkhasti M (2018) Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement 124:447–452

    Article  Google Scholar 

  57. Li Z, Aroma detection and control in passive and dynamic food systems for superior product. Ph.D. hesis 2008; McGill University, Canada

  58. Li Z, Raghavan GSV, Wang N (2010) Carrot volatiles monitoring and control in microwave drying. LWT Food Sci Technol 43:291–297

    Article  CAS  Google Scholar 

  59. Li Z, Raghavan GSV, Wang N (2010) Apple volatiles monitoring and control in microwave drying. LWT Food Sci Technol 43:684–689

    Article  CAS  Google Scholar 

  60. Li L, Li Z, Li J, Xu W (2018) The microwave drying process of balsam pear based on online flavor detection. Jiangsu J Agric Sci 34:179–185

    Google Scholar 

  61. Raghavan GSV, Li Z, Wang N, Gariepy Y (2010) Control of microwave drying process through aroma monitoring. Dry Technol 28:591–599

    Article  Google Scholar 

  62. Brosnan T, Sun DW (2004) Improving quality inspection of food products by computer vision—a review. J Food Eng 61:3–16

    Article  Google Scholar 

  63. Du CJ, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15:230–249

    Article  CAS  Google Scholar 

  64. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  65. Fernandez L, Castillero C, Aguilera J (2005) An application of image analysis to dehydration of apple discs. J Food Eng 67:185–193

    Article  Google Scholar 

  66. Commission I E. Multimedia systems and equipment—colour measurement and management—part 2-1: colour management-default RGB colour space-sRGB. IEC 61966-2-1 1999

  67. Zenoozian MS, Devahastin S, Razavi MA, Shahidi F, Poreza HR (2008) Use of artificial neural network and image analysis to predict physical properties of osmotically dehydrated pumpkin. Dry Technol 26:132–144

    Article  CAS  Google Scholar 

  68. Hosseinpour S, Rafiee S, Aghbashlo M, Mohtasebi SS (2014) A novel image processing approach for in-line monitoring of visual texture during shrimp drying. J Food Eng 143:154–166

    Article  Google Scholar 

  69. Hosseinpour S, Rafiee S, Mohtasebi SS (2011) Application of image processing to analyze shrinkage and shape changes of shrimp batch during drying. Dry Technol 29:1416–1438

    Article  Google Scholar 

  70. Nadian MH, Rafiee S, Aghbashlo M, Hosseinpour S, Mohtasebi SS (2015) Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying. Food Bioprod Process 94:263–274

    Article  Google Scholar 

  71. Martynenko A (2017) Computer vision for real-time control in drying. Food Eng Rev 9:91–111

    Article  Google Scholar 

  72. Davidson VJ, Martynenko AI, Parhar NK, Sidahmed M, Brown RB (2009) Forced-air drying of ginseng root: pilot-scale control system for three-stage process. Dry Technol 27:451–458

    Article  Google Scholar 

  73. Martynenko AI (2011) Porosity evaluation of ginseng roots from real-time imaging and mass measurements. Food Bioprocess Technol 4:417–428

    Article  Google Scholar 

  74. Yadollahinia A, Latifi A, Mahdavi R (2009) New method for determination of potato slice shrinkage during drying. Comput Electron Agric 65:268–274

    Article  Google Scholar 

  75. Mohebbi M, Akbarzadeh TMR, Shahidi F, Moussavi M, Ghoddusi HB (2009) Computer vision systems (CVS) for moisture content estimation in dehydrated shrimp. Comput Electron Agric 69:128–134

    Article  Google Scholar 

  76. Wu D, Shi H, Wang S, He Y, Bao Y, Liu K (2012) Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal Chim Acta 726:57–66

    Article  CAS  PubMed  Google Scholar 

  77. Wu D, Sun DW (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review—part I: fundamentals. Innovative Food Sci Emerg Technol 19:1–14

    Article  CAS  Google Scholar 

  78. Monteiro ST, Kosugi Y, Uto K, Watanabe E (2004) Towards applying hyperspectral imagery as an intraoperative visual aid tool. 4th IASTED International Conference on Visualization, Imaging and Image Processing 452:240–258

  79. Liu Z, Wang H, Li Q (2012) Tongue tumor detection in medical hyperspectral images. Sensors 12:162–174

    Article  CAS  PubMed  Google Scholar 

  80. Sowa MG, Payette JR, Hewko MD, Mantsch HH (1999) Visible-near infrared multispectral imaging of the rat dorsal skin flap. J Biomed Opt 4:474–482

    Article  CAS  PubMed  Google Scholar 

  81. Wu D, Wang SJ, Wang NF, Nie PC, He Y, Sun DW, Yao JS (2013) Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration. Food Bioprocess Technol 6:2943–2958

    Article  Google Scholar 

  82. Huang M, Zhao W, Wang Q, Zhang M, Zhu Q (2015) Prediction of moisture content uniformity using hyperspectral imaging technology during the drying of maize kernel. Int Agrophys 29:39–46

    Article  Google Scholar 

  83. Liu Y, Sun Y, Xie A, Yu H, Yin Y, Li X, Duan X (2017) Potential of hyperspectral imaging for rapid prediction of anthocyanin content of purple-fleshed sweet potato slices during drying process. Food Anal Methods 10:3836–3846

    Article  Google Scholar 

  84. Sun Y, Liu Y, Yu H, Xie A, Li X, Yin Y, Duan X (2017) Non-destructive prediction of moisture content and freezable water content of purple-fleshed sweet potato slices during drying process using hyperspectral imaging technique. Food Anal Methods 10:1535–1546

    Article  Google Scholar 

  85. Huang M, Wang Q, Zhang M, Zhu Q (2014) Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. J Food Eng 128:24–30

    Article  Google Scholar 

  86. Ma J, Sun DW, Pu H (2016) Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles. Food Chem 197:848–854

    Article  CAS  PubMed  Google Scholar 

  87. Pu YY, Sun DW (2016) Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innovative Food Sci Emerg Technol 33:348–356

    Article  Google Scholar 

  88. Pu YY, Sun DW (2015) Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chem 188:271–218

    Article  CAS  PubMed  Google Scholar 

  89. Retz S, Porley VE, von Gersdorff G, Hensel O, Crichton S, Sturm B (2017) Effect of maturation and freezing on quality and drying kinetics of beef. Dry Technol 35:2002–2014

    Article  CAS  Google Scholar 

  90. Nguyen-Do-Trong T, Dusabumuremyi JC, Saeys W (2018) Cross-polarized VNIR hyperspectral reflectance imaging for non-destructive quality evaluation of dried banana slices, drying process monitoring and control. J Food Eng 238:85–94

    Article  Google Scholar 

  91. Ma J, Sun DW, Qu JH, Pu H (2017) Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT Food Sci Technol 82:377–385

    Article  CAS  Google Scholar 

  92. Gowen AA, Marini F, Esquerre C, O'Donnell C, Downey G, Burger J (2011) Time series hyperspectral chemical imaging data: challenges, solutions and applications. Anal Chim Acta 705:272–282

    Article  CAS  PubMed  Google Scholar 

  93. Xie CQ, Li XL, Nie PC, He Y (2013) Application of time series hyperspectral imaging (TS-HSI) for determining water content within tea leaves during drying. Trans ASABE 56:1431–1440

    Google Scholar 

  94. Blanco M, Villarroya I (2002) NIR spectroscopy: a rapid-response analytical tool. TrAC Trends Anal Chem 21:240–250

    Article  CAS  Google Scholar 

  95. Stawczyk J, Munoz I, Collell C, Comaposada J (2009) Control system for sausage drying based on on-line NIR a(w) determination. Dry Technol 27:1338–1343

    Article  CAS  Google Scholar 

  96. Collell C, Gou P, Arnau J, Munoz I, Comaposada J (2012) NIR technology for on-line determination of superficial a(w) and moisture content during the drying process of fermented sausages. Food Chem 135:1750–1755

    Article  CAS  PubMed  Google Scholar 

  97. Moscetti R, Raponi F, Ferri S, Colantoni A, Monarca D, Massantini R (2018) Real-time monitoring of organic apple (var. Gala) during hot-air drying using near-infrared spectroscopy. J Food Eng 222:139–150

    Article  Google Scholar 

  98. Chen WJ, Lin XY, Rong-Sheng R, Cheng-Yun HE, Zhu RB, Liu YH (2006) Study on quickly and non-destructive estimate the moisture content of food using NMR. Food Res Dev 27:125–127

    Google Scholar 

  99. Pitombo RNM, Lima GAMR (2003) Nuclear magnetic resonance and water activity in measuring the water mobility in Pintado (Pseudoplatystoma corruscans) fish. J Food Eng 58:59–66

    Article  Google Scholar 

  100. Mao H, Wang F, Mao F, Chi Y, Lu S, Cen K (2016) Measurement of water content and moisture distribution in sludge by 1H nuclear magnetic resonance spectroscopy. Dry Technol 34:267–274

    Article  CAS  Google Scholar 

  101. Lv W, Zhang M, Wang Y, Adhikari B (2018) Online measurement of moisture content, moisture distribution, and state of water in corn kernels during microwave vacuum drying using novel smart NMR/MRI detection system. Dry Technol 36:1592–1602

    Article  Google Scholar 

  102. Belton PS, Gil AM, Webb GA, Rutledge D (1994) Magnetic resonance in food science: latest developments. Magn Reson Food Sci 34:411–412

    Google Scholar 

  103. Webb GA, Belton P, Gil AM, Delgadillo I (2000) Magnetic resonance in food science: a view to the future. Proceedings of the second international conference on applications of magnetic resonance in food science. University of Aveiro, Portugal

    Google Scholar 

  104. Belton PS, Hills BP, Webb GA (1998) Advances in magnetic resonance in food science. MPG Books Ltd, UK

  105. Marcone MF, Wang S, Albabish W et al (2013) Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res Int 51:729–747

    Article  CAS  Google Scholar 

  106. Gutowsky HS, Kistiakowsky GB, Pake GE, Purcell EM (1949) Structural investigations by means of nuclear magnetism. I. Rigid crystal lattices. J Chem Phys 17:972–981

    Article  CAS  Google Scholar 

  107. Belton P, Capozzi F (2011) Magnetic resonance in food science—meeting the challenge. Magn Reson Chem 49:S1

    Article  CAS  PubMed  Google Scholar 

  108. Feng LC, Yi MW, Bo Z (2010) Characterization of water state and distribution in textured soybean protein using DSC and NMR. J Food Eng 99:522–526

    Google Scholar 

  109. Nestor G, Bankefors J, Schlechtriem C (2010) High-resolution ~1H magic angle spinning NMR spectroscopy of intact Arctic char (Salvelinus alpinus) muscle. Quantitative analysis of n-3 fatty acids, EPA and DHA. J Agric Food Chem 58:10799–10803

    Article  CAS  PubMed  Google Scholar 

  110. Eric Morssing V, Lundqvist LCE, Diane J, William H, Corine SM (2015) NMR study on hydroxy protons of κ- and κ/μ-hybrid carrageenan oligosaccharides. Biomacromolecules 11:3487–3494

    Google Scholar 

  111. Butz P, Hofmann C, Tauscher B (2010) Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. J Food Sci 70:R131–R141

    Article  Google Scholar 

  112. Ciampa A, Dell’Abate MT, Masetti O, Valentini M, Sequi P (2010) Seasonal chemical-physical changes of PGI Pachino cherry tomatoes detected by magnetic resonance imaging (MRI). Food Chem 122:1253–1260

    Article  CAS  Google Scholar 

  113. Otero L, Préstamo G (2009) Effects of pressure processing on strawberry studied by nuclear magnetic resonance. Innovative Food Sci Emerg Technol 10:434–440

    Article  CAS  Google Scholar 

  114. Pearce KL, Katja R, Andersen HJ, Hopkins DL (2011) Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—a review. Meat Sci 89:111–124

    Article  PubMed  Google Scholar 

  115. Sequi P, Dell'Abate MT, Valentini M (2010) Identification of cherry tomatoes growth origin by means of magnetic resonance imaging. J Sci Food Agric 87:127–132

    Article  CAS  Google Scholar 

  116. Hansen CL, Thybo AK, Bertram HC, Viereck N, Berg FVD, Engelsen SB (2010) Determination of dry matter content in potato tubers by low-field nuclear magnetic resonance (LF-NMR). J Agric Food Chem 58:10300–10304

    Article  CAS  PubMed  Google Scholar 

  117. Thybo AK, Andersen HJ, Karlsson AH, Dønstrup S, Stødkilde-Jørgensen H (2003) Low-field NMR relaxation and NMR-imaging as tools in differentiation between potato sample and determination of dry matter content in potatoes. LWT Food Sci Technol 36:315–322

    Article  CAS  Google Scholar 

  118. Li M, Wang H, Zhao G, Qiao M, Mei L, Sun L, Gao X, Zhang J (2014) Determining the drying degree and quality of chicken jerky by LF-NMR. J Food Eng 139:43–49

    Article  Google Scholar 

  119. Hullberg A, Bertram HC (2005) Relationships between sensory perception and water distribution determined by low-field NMR T2 relaxation in processed pork—impact of tumbling and RN allele. Meat Sci 69:709–720

    Article  PubMed  Google Scholar 

  120. Pereira FMV, Pflanzer SB, Gomig T, Gomes CL, Felício PED, Colnago LA (2013) Fast determination of beef quality parameters with time-domain nuclear magnetic resonance spectroscopy and chemometrics. Talanta 108:88–91

    Article  CAS  PubMed  Google Scholar 

  121. Lv W, Min Z, Wang Y, Adhikari B (2018) Online measurement of moisture content, moisture distribution, and state of water in corn kernels during microwave vacuum drying using novel smart NMR/MRI detection system. Dry Technol:1–11

  122. Li L, Min Z, Bhandari B, Zhou L (2018) LF-NMR online detection of water dynamics in apple cubes during microwave vacuum drying. Dry Technol:1–10

  123. Spyros A, Dais P (2009) 31 P NMR spectroscopy in food analysis. Prog Nucl Magn Reson Spectrosc 54:195–207

    Article  CAS  Google Scholar 

  124. Nelson SO (1994) Measurement of microwave dielectric-properties of particulate materials. J Food Eng 21:365–384

    Article  Google Scholar 

  125. Nelson SO (1996) Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans ASAE 39:1475–1484

    Article  Google Scholar 

  126. Zhu X, Guo W, Wu X, Wang S (2012) Dielectric properties of chestnut flour relevant to drying with radio-frequency and microwave energy. J Food Eng 113:143–150

    Article  CAS  Google Scholar 

  127. Song C, Sang T, Chen H, Li Z, Li J (2017) Dielectric properties of blackberries as related to microwave drying control. Int J Food Eng 13

  128. Jiang H, Zhang M, Mujumdar AS, Lim RX (2014) Changes of microwave structure/dielectric properties during microwave freeze-drying process banana chips. Int J Food Sci Technol 49:1142–1148

    Article  CAS  Google Scholar 

  129. Luo G, Song C, Hongjie P, Li Z, Xu W, Raghavan G, Chen H, Jin G (2019) Optimization of the microwave drying process for potato chips based on the measurement of dielectric properties. Dry Technol 37:1329–1339

    Article  CAS  Google Scholar 

  130. Shurmer HV, Gardner JW (1992) Odour discrimination with an electronic nose. Sensors Actuators B Chem 8:1–11

    Article  CAS  Google Scholar 

  131. Arshak K, Lyons G, Cunniffe C, Harris J, Clifford S (2003) A review of digital data acquisition hardware and software for a portable electronic nose. Sens Rev 23:332–344

    Article  Google Scholar 

  132. Arshak K, Lyons G, Cavanagh L, Clifford S (2003) Front-end signal conditioning used for resistance-based sensors in electronic nose systems: a review. Sens Rev 23:230–241

    Article  Google Scholar 

  133. Neaves P, Hatfield J (1995) A new generation of integrated electronic noses. Sensors Actuators B Chem 27:223–231

    Article  CAS  Google Scholar 

  134. Chanona-Pérez J, Quevedo R, Aparicio AJ, Chávez CG, Pérez JM, Domínguez GC, Alamilla-Beltrán L, Gutiérrez-López GF (2008) Image processing methods and fractal analysis for quantitative evaluation of size, shape, structure and microstructure in food materials. Food Engineering: Integrated Approaches 277–286

  135. Ratti C (2008) Advances in food dehydration. CRC, Boca Raton

    Book  Google Scholar 

  136. Courtois F, Faessel M, Bonazzi C (2010) Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. Food Control 21:567–572

    Article  Google Scholar 

  137. Lu G, Fei B (2014) Medical hyperspectral imaging: a review. J Biomed Opt 19:010901

    Article  PubMed Central  CAS  Google Scholar 

  138. Gowen A, O'Donnell C, Cullen P, Downey G, Frias J (2007) Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18:590–598

    Article  CAS  Google Scholar 

  139. Porep JU, Kammerer DR, Carle R (2015) On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci Technol 46:211–230

    Article  CAS  Google Scholar 

  140. Osborne BG (1986) Near-infrared spectroscopy in food analysis. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation 1–14

  141. Jiang H, Zhang M, Mujumdar AS, Rui XL (2014) Changes of microwave structure/dielectric properties during microwave freeze-drying process banana chips. Int J Food Sci Technol 49:1142–1148

    Article  CAS  Google Scholar 

  142. Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156:183–207

    Article  CAS  Google Scholar 

  143. Lerma NLD, Bellincontro A, Mencarelli F, Moreno J, Peinadoa RA (2011) Use of electronic nose, validated by GC-MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chem 130:447–452

    Article  CAS  Google Scholar 

  144. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22:4–37

    Article  Google Scholar 

  145. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  146. Eriksson L, Wold S, Trygg J (2005) Multivariate analysis of congruent images (MACI). J Chemom 19:393–403

    Article  CAS  Google Scholar 

  147. Kucheryavski S (2007) Using hard and soft models for classification of medical images. Chemom Intell Lab Syst 88:100–106

    Article  CAS  Google Scholar 

  148. Zeaiter M, Roger JM, Bellon-Maurel V (2005) Robustness of models developed by multivariate calibration. Part II: the influence of pre-processing methods. TrAC Trends Anal Chem 24:437–445

    Article  CAS  Google Scholar 

  149. Liu L, Ngadi M, Prasher S, Gariépy C (2010) Categorization of pork quality using Gabor filter-based hyperspectral imaging technology. J Food Eng 99:284–293

    Article  Google Scholar 

  150. Baranowski P, Mazurek W, Wozniak J, Majewska U (2012) Detection of early bruises in apples using hyperspectral data and thermal imaging. J Food Eng 110:345–355

    Article  Google Scholar 

  151. Heia K, Sivertsen AH, Stormo SK, Elvevoll E, Wold JP, Nilsen H (2007) Detection of nematodes in cod (Gadus morhua) fillets by imaging spectroscopy. J Food Sci 72:E011–E015

    Article  PubMed  CAS  Google Scholar 

  152. Vargas AM, Kim MS, Tao Y, Lefcourt AM, Chen YR, Luo Y, Song Y, Buchanan R (2005) Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. J Food Sci 70:e471–e476

    Article  CAS  Google Scholar 

  153. Huang H, Liu L, Ngadi M (2014) Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 14:7248–7276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Haton JP (2006) A brief introduction to artificial intelligence. IFAC Proc Vol 39:8–16

    Article  Google Scholar 

  155. Hotel O, Poli JP, Mer-Calfati C, Scorsone E, Saada S (2018) A review of algorithms for SAW sensors e-nose based volatile compound identification. Sensors Actuators B Chem 255:2472–2482

    Article  CAS  Google Scholar 

  156. Längkvist M, Coradeschi S, Loutfi A, Rayappan J (2013) Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning. Sensors 13:1578–1592

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  157. Du CJ, Sun DW (2006) Learning techniques used in computer vision for food quality evaluation: a review. J Food Eng 72:39–55

    Article  Google Scholar 

  158. Yu H, MacGregor JF (2003) Multivariate image analysis and regression for prediction of coating content and distribution in the production of snack foods. Chemom Intell Lab Syst 67:125–144

    Article  CAS  Google Scholar 

  159. Martynenko AI,Yang SX (2007) An intelligent control system for thermal processing of biomaterials. 2007 IEEE International Conference on Networking, Sensing and Control 93–98

Download references

Funding

The authors would like to extend their appreciation for the financial support provided by the Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfeng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Z., Wang, N. et al. Novel Sensing Technologies During the Food Drying Process. Food Eng Rev 12, 121–148 (2020). https://doi.org/10.1007/s12393-020-09215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09215-2

Keywords

Navigation