Skip to main content
Log in

Volumetric and Viscosimetric Measurements for Methanol + CH3–O–(CH2CH2O)n–CH3 (n = 2, 3, 4) Mixtures at (293.15–303.15) K and Atmospheric Pressure: Application of the ERAS Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities, \(\rho\), and kinematic viscosities, \(\nu\), have been determined at atmospheric pressure and at 293.15–303.15 K for binary mixtures formed by methanol and one linear polyether of the type CH3–O–(CH2CH2O)n–CH3 (n = 2, 3, 4). Measurements on \(\rho\) and \(\nu\) were carried out, respectively, using an Anton Paar DMA 602 vibrating-tube densimeter and an Ubbelohde viscosimeter. The \(\rho\) values were used to compute excess molar volumes, \(V_{{\text{m}}}^{{\text{E}}}\), and, together with the \(\nu\) results, dynamic viscosities (\(\eta\)). Deviations from linear dependence on mole fraction for viscosity, \(\Delta \eta\), are also provided. Different semi-empirical equations have been employed to correlate viscosity data. Particularly, the equations used are the: Grunberg–Nissan, Hind, Frenkel, Katti–Chaudhri, McAllister and Heric. Calculations show that better results are obtained from the Hind equation. The \(V_{{\text{m}}}^{{\text{E}}}\) values are large and negative and contrast with the positive excess molar enthalpies, \(H_{{\text{m}}}^{{\text{E}}}\), available in the literature, for these systems. This indicates that structural effects are dominant. The \(\Delta \eta\) results are positive and correlate well with the difference in volumes of the mixture compounds, confirming the importance of structural effects. The temperature dependences of \(\eta\) and of the molar volume have been used to calculate enthalpies, entropies and Gibbs energies, \(\Delta G^{*}\), of viscous flow. It is demonstrated that \(\Delta G^{*}\) is essentially determined by enthalpic effects. Methanol + CH3–O–(CH2CH2O)n–CH3 mixtures have been treated in the framework of the ERAS model. Results for \(H_{{\text{m}}}^{{\text{E}}}\) are acceptable, while the composition dependence of the \(V_{{\text{m}}}^{{\text{E}}}\) curves is poorly represented. This has been ascribed to the existence of strong dipolar and structural effects in the present solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Csikos, R., Pallay, J., Laky, J., Radchenko, E.D., Englin, B.A., Robert, J.A.: Low-lead fuel with MTBE and C4 alcohols. Hydrocarb. Process. Int. Ed. 55, 121–125 (1976)

    CAS  Google Scholar 

  2. Hatzionnidis, I., Voutsas, E., Lois, E., Tassios, D.P.: Measurement and prediction of Reid vapor pressure of gasoline in the presence of additives. J. Chem. Eng. Data 43, 386–392 (1986)

    Google Scholar 

  3. Nowaczyk, U., Steimle, F.: Thermophysical properties of new working fluid systems for absorption processes. Int. J. Refrig. 15, 10–15 (1992)

    CAS  Google Scholar 

  4. Soane, D.S.: Polymer Applications for Biotechnology. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  5. Feng, Z., Zhao, J., Li, Y., Xu, S., Zhou, J., Zhang, J., Deng, L., Dong, A.: Temperature-responsive in situ nanoparticle hydrogels based on hydrophilic pendant cyclic ether modified PEG–PCL–PEG. Biomater. Sci. 4, 1493–1502 (2016)

    PubMed  CAS  Google Scholar 

  6. Kralj, M., Tusek-Bozic, L., Frkanec, L.: Biomedical potentials of crown ethers: prospective antitumor agents. ChemMedChem 3, 1478–1492 (2008)

    PubMed  CAS  Google Scholar 

  7. González, J.A., Mozo, I., García de la Fuente, I., Cobos, J.C., Riesco, N.: Thermodynamics of (1-alkanol + linear monoether) systems. J. Chem. Thermodyn. 40, 1495–1598 (2008)

    Google Scholar 

  8. Serna, A., García de la Fuente, I., González, J.A., Cobos, J.C.: Excess molar volumes of 1-propanol + n-polyethers ar 298.15 K. Fluid Phase Equilib. 133, 187–192 (1997)

    CAS  Google Scholar 

  9. Villa, S., Riesco, N., Carmona, F.J., García de la Fuente, I., González, J.A., Cobos, J.C.: Temperature dependence of excess properties in alcohols + ethers mixtures. I. Excess molar volumes of 1-propanol or 1-hexanol + ethers at 318.15 K. Thermochim. Acta 362, 169–177 (2000)

    CAS  Google Scholar 

  10. Serna, A., Villa, S., García de la Fuente, I., González, J.A., Cobos, J.C.: Excess molar volumes of binary mixtures of hexanol and polyethers at 25 °C. J. Solution Chem. 30, 253–261 (2001)

    CAS  Google Scholar 

  11. Carmona, F.J., Arroyo, F.J., García de la Fuente, I., González, J.A., Cobos, J.C.: Excess molar volumes of methanol or ethanol + n-polyethers at 298.15 K. Can. J. Chem. 77, 608–1616 (1999)

    Google Scholar 

  12. Carmona, F.J., Arroyo, F.J., García de la Fuente, I., González, J.A., Cobos, J.C.: Excess molar volumes of binary mixtures of 1-heptanol or 1-nonanol with n-polyethers at 25 °C. J. Solution Chem. 29, 743–756 (2000)

    Google Scholar 

  13. Mozo, I., García de la Fuente, I., González, J.A., Cobos, J.C.: Densities, excess molar volumes, speeds of sound at (293.15, 298.15 and 303.15) K and isentropic compressibilities at 298.15 for 1-butanol, 1-pentanol or 1-hexanol + dibutylether systems. J. Chem. Eng. Data 53, 857–862 (2008)

    CAS  Google Scholar 

  14. González, J.A., Mediavilla, A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of (1-alkanol + linear polyether) mixtures. J. Chem. Thermodyn. 59, 195–208 (2013)

    Google Scholar 

  15. Cobos, J.C., Villamañán, M.A., Casanova, C.: Excess enthalpies of (n-alkanol + 2,5-dioxahexane) at 298.15 K. J. Chem. Thermodyn. 16, 861–864 (1984)

    CAS  Google Scholar 

  16. Cobos, J.C., García, I., González, J.C., Casanova, C.: Excess enthalpies of (3,6,9-trioxaundecane + an n-alkan-1-ol) at 298.15 K. J. Chem. Thermodyn. 22, 383–386 (1990)

    CAS  Google Scholar 

  17. Cobos, J.C., García de la Fuente, I., González, J.A.: Molar excess enthalpies for some systems containing the OH and (or) O groups in the same or in different molecules. Can. J. Chem. 80, 292–301 (2002)

    CAS  Google Scholar 

  18. Mozo, I., García de la Fuente, I., González, J.A., Cobos, J.C.: Molar excess enthalpies at T = 298.15 K for (1-alkanol + dibutylether) systems. J. Chem. Thermodyn. 42, 17–22 (2010)

    CAS  Google Scholar 

  19. Alonso, V., González, J.A., García de la Fuente, I., Cobos, J.C.: Dielectric and refractive index measurements for the systems 1-pentanol + octane, or + dibutyl ether or for dibutyl ether + octane at different temperatures. Thermochim. Acta 543, 246–253 (2012)

    CAS  Google Scholar 

  20. Alonso, V., González, J.A., García de la Fuente, I., Cobos, J.C.: Dielectric and refractive index measurements for the systems 1-pentanol + 2,5,8,11,14-pentaoxapentadecane, or for 2,5,8,11,14-pentaoxapentadecane + octane at (293.15–303.15) K. Thermochim. Acta 551, 70–77 (2013)

    CAS  Google Scholar 

  21. González, J.A., Mozo, I., García de la Fuente, I., Cobos, J.C., Durov, V.A.: Thermodynamics of 1-alkanol + cyclic ether mixtures. Fluid Phase Equilib. 245, 168–184 (2006)

    Google Scholar 

  22. González, J.A., Riesco, N., Mozo, I., García de la Fuente, I., Cobos, J.C.: Application of the Flory theory and of the Kirkwood-Buff formalism to the study of orientational effects in 1-alkanol + linear or cyclic monoether mixtures. Ind. Eng. Chem. Res. 48, 7417–7429 (2009)

    Google Scholar 

  23. González, J.A., García de la Fuente, I., Cobos, J.C.: Application of the Kirkwood-Buff formalism to (CH3(CH2)n-1OH + polyether mixtures for n = 1,2,3. Thermochim. Acta 525, 103–113 (2011)

    Google Scholar 

  24. Kehiaian, H.V.: Group contribution methods for liquid mixtures: a critical review. Fluid Phase Equilib. 13, 243–252 (1983)

    CAS  Google Scholar 

  25. Heintz, A.: A new theoretical approach for predicting excess properties of alkanol/alkane mixtures. Ber. Bunsenges. Phys. Chem. 89, 172–181 (1985)

    CAS  Google Scholar 

  26. Flory, P.J.: Statistical thermodynamics of liquid mixtures. J. Am. Chem. Soc. 87, 1833–1838 (1965)

    CAS  Google Scholar 

  27. Kirkwood, J.G., Buff, F.P.: The statistical mechanical theory of solutions. I. J. Chem. Phys. 19, 774–777 (1954)

    Google Scholar 

  28. Villamañan, M.A., Casanova, C., Roux-Desgranges, G., Grolier, J.-P.E.: Thermochemical behaviour of mixtures of n-alcohol + aliphatic ether: heat capacities and volumes at 298.15 K. Thermochim. Acta 52, 279–283 (1982)

    Google Scholar 

  29. Esteve, X., Olive, F., Patil, K.R., Chaudhari, S.K., Coronas, A.: Densities and viscosities of the binary mixtures of interest for absorption refrigeration systems and heat pumps. Fluid Phase Equilib. 110, 369–382 (1995)

    CAS  Google Scholar 

  30. Pereira, S.M., Rivas, M.A., Iglesias, T.P.: Speeds of sound, densities, and isentropic compressibilities of the system methanol + tetraethylene glycol dimethyl ether at the temperatures from 293.15 K to 333.15 K. J. Chem. Eng. Data 47, 1363–1366 (2002)

    CAS  Google Scholar 

  31. Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949)

    PubMed  CAS  Google Scholar 

  32. Hind, R.K., McLaughlin, E., Ubbelohde, A.R.: Structure and viscosity of liquids. Viscosity–temperature relationships of pyrrole and pyrrolidine. Trans. Faraday Soc. 56, 331–334 (1960)

    CAS  Google Scholar 

  33. Frenkel, Y.I.: Kinematics theory of liquids. Oxford University Press, London (1949)

    Google Scholar 

  34. Katti, P.K., Chaudhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964)

    CAS  Google Scholar 

  35. McAllister, R.A.: The viscosity of liquid mixtures. AIChE J. 6, 427–431 (1960)

    CAS  Google Scholar 

  36. Heric, E.L.: On the viscosity of ternary mixtures. J. Chem. Eng. Data 11, 66–68 (1966)

    CAS  Google Scholar 

  37. Treszczanowicz, T., Cieslak, D.: (Liquid + liquid) equilibria in (a dimethyl ether of a polyethene glycol + an n-alkane. J. Chem. Thermodyn. 25, 661–665 (1993)

    CAS  Google Scholar 

  38. Mozo, I., González, J.A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures containing ethers. III. Liquid–liquid equilibria for 2,5,8,11-tetraoxadodecane or 2,5,8,11,14-pentaoxapentadecane + selected n-alkanes. J. Chem. Eng. Data 42, 1091–1094 (2004)

    Google Scholar 

  39. Mohren, S., Heintz, A.: Excess properties of propan-1-ol + polyether and propan-1-ol + polyamine mixtures. Experimental results of HE and VE and application of a multiple cross-association theory based on the ERAS model. Fluid Phase Equilib. 133, 247–264 (1997)

    CAS  Google Scholar 

  40. CIAAW, Atomic weights of the elements 2015, ciaaw.org/atomic-weights.htm (Accessed 2019)

  41. Villa, S., Riesco, N., García de la Fuente, I., González, J.A., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. Part 5. Excess molar volumes at 298.15 K for 1-alkanols + dipropylamine systems. Characterization in terms of the ERAS model. Fluid Phase Equilib. 190, 113–125 (2001)

    CAS  Google Scholar 

  42. Villa, S., Riesco, N., García de la Fuente, I., González, J.A., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. Part 6. Excess molar volumes at 298.15 K for 1-alkanols + dibutylamine systems. Characterization in terms of the ERAS model. Fluid Phase Equilib. 198, 313–329 (2002)

    CAS  Google Scholar 

  43. Sanz, L.F., González, J.A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult's law. XI. Densities, viscosities and refractives indices at (293.15–303.15) K for cyclohexylamine + 1-propanol, or + 1-butanol systems. J. Mol. Liq. 172, 26–33 (2012)

    CAS  Google Scholar 

  44. Romano, E., Trenzado, J.L., González, E., Matos, J.S., Segade, L., Jiménez, E.: Thermophysical properties of four binary dimethyl carbonate + 1-alcohol systems at 288.15–313.15 K. Fluid Phase Equilib. 211, 219–240 (2003)

    CAS  Google Scholar 

  45. Bevington, P.R.: Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New York (1969)

    Google Scholar 

  46. PowelI, R.E., Roseveare, N.E., Eyring, H.: Diffusion, thermal conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33, 430–435 (1941)

    Google Scholar 

  47. González, J.A., Villa, S., Riesco, N., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures containing alkoxyethanols: Part XVII. ERAS characterization of alkoxyethanol + alkane systems. Can. J. Chem. 81, 319–329 (2003)

    Google Scholar 

  48. González, J.A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. Part 4. Application of the DISQUAC model to mixtures of 1-alkanols with primary or secondary linear amines. Comparison with Dortmund UNIFAC and ERAS results. Fluid Phase Equilib. 168, 31–58 (2000)

    Google Scholar 

  49. Heintz, A., Naicker, P.K., Verevkin, S.P., Pfestorf, R.: Thermodynamics of alkanol + amine mixtures. Experimental results and ERAS model calculation of the heat of mixing. Ber. Bunsenges. Phys. Chem. 102, 953–959 (1998)

    CAS  Google Scholar 

  50. Heintz, A., Papaioannou, D.: Excess enthalpies of alcohol + amine mixtures. Experimental results and theoretical description using the ERAS model. Thermochim. Acta 310, 69–76 (1998)

    CAS  Google Scholar 

  51. Bondi, A.: Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York (1968)

    Google Scholar 

  52. Villa, S., Riesco, N., García de la Fuente, I., González, J.A., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. Part 8. Excess molar volumes at 298.15 K for 1-alkanols + isomeric amine (C6H15N). Characterization in terms of the ERAS model. Fluid Phase Equilib. 216, 123–133 (2004)

    CAS  Google Scholar 

  53. Funke, H., Wetzel, M., Heintz, A.: New applications of the ERAS model. Thermodynamics of amine + alkane and alcohol + amine mixtures. Pure Appl. Chem. 63, 1429–1439 (1989)

    Google Scholar 

  54. Villamañán, M.A., Casanova, C., Roux, A.H., Grolier, J.-P.E.: Calorimetric investigation of the interactions between oxygen and hydroxyl groups in (alcohol + ether) at 298.15 K. J. Chem. Thermodyn. 14, 251–258 (1982)

    Google Scholar 

  55. López, E.R., García, J., Coronas, A., Fernández, J.: Experimental and predicted excess enthalpies of the working pairs (methanol or trifluoroethanol + polyglycol ethers) for absorption cycles. Fluid Phase Equilib. 133, 229–238 (1997)

    Google Scholar 

  56. Meyer, R.J., Metzger, J.V., Kehiaian, C., Kehiaian, H.V.: Enthalpies de melange des acetals avec les alcanes normaux, le benzene et le tetrachlorure de carbone. Thermochim. Acta 38, 197–209 (1980)

    CAS  Google Scholar 

  57. Treszczanowicz, T., Benson, G.C., Lu, B.C.-Y.: Excess enthalpies for binary mixtures of 2,5,8-trioxanonane or 2,5,8,11,14-pentaoxapentadecane with n-alkanes at 298.15 K. J. Chem. Eng. Data 33, 379–381 (1988)

    CAS  Google Scholar 

  58. Treszczanowicz, T., Wang, L., Benson, G.C., Lu, B.C.-Y.: Excess enthalpies for binary mixtures formed by 2,5,8,11-tetraoxadodecane with homologous n-alkanes. Thermochim. Acta 189, 255–259 (1991)

    CAS  Google Scholar 

  59. Skrzecz, A.: Critical evaluation of solubility data in binary systems formed by methanol with n-hydrocarbons. Thermochim. Acta 182, 123–131 (1991)

    Google Scholar 

  60. Lepori, L., Gianni, P., Matteoli, E.: The effect of the molecular size and shape on the volume behavior of binary liquid mixtures. Branched and cyclic alkanes in heptane at 298.15 K. J. Solution Chem. 42, 1263–1304 (2013)

    CAS  Google Scholar 

  61. Costas, M., Van Tra, H., Patterson, D., Cáceres-Alonso, M., Tardajos, G., Aicart, E.: Liquid structure and second-order mixing functions for 1-chloronaphthalene with linear and branched alkanes. J. Chem. Soc. Faraday Trans. I84, 1603–1616 (1988)

    CAS  Google Scholar 

  62. Riddick, J.A., Bunger, W.B., Sakano. T.K.: Organic Solvents, Techniques of Chemistry, Vol. II. In: Weissberger, A. (ed.). Wiley, New York (1986)

  63. Peleteiro, J., Tovar, C.A., Carballo, E., Legido, J.L., Romaní, L.: Temperature dependence of volumetric properties of binary mixtures containing oxaalkane + c-hexane. Can. J. Chem. 72, 454–462 (1994)

    CAS  Google Scholar 

  64. Rowlinson, J.S., Swinton, F.L.: Liquids and Liquid Mixtures, 3rd edn. Butterworths, London (1982)

    Google Scholar 

  65. Kalali, H., Kohler, F., Svejda, P.: Excess properties of binary mixtures of 2,2,4-trimethylpentane with one polar component. Fluid Phase Equilib. 20, 75–80 (1985)

    CAS  Google Scholar 

  66. Treszczanowicz, A.J., Kiyohara, O., Benson, G.C.: Interpretation of the excess volume in alcohol and saturated-hydrocarbon binary systems. Bull. Acad. Pol. Sci. Ser. Sci. Chim. 29, 103–110 (1981)

    CAS  Google Scholar 

  67. Treszczanowicz, A.J., Benson, G.C.: Excess volumes for n-alkanols + n-alkanes II. Binary mixtures of n-pentanol, n-hexanol, n-octanol, and n-decanol + n-heptane. J. Chem. Thermodyn. 10, 967–974 (1978)

    CAS  Google Scholar 

  68. Treszczanowicz, A.J., Benson, G.C.: Excess volumes for n-alkanols + n-alkanes I. Binary mixtures of methanol, ethanol, n-propanol, and n-butanol + n-heptane. J. Chem. Thermodyn. 9, 1189–1197 (1977)

    CAS  Google Scholar 

  69. Andreoli Ball, L., Trejo, L.M., Costas, M., Patterson, D.: Excess volumes of mixtures of glymes with normal, branched and cyclic alkanes. Fluid Phase Equilib. 147, 163–180 (1998)

    CAS  Google Scholar 

  70. Singh, K.P., Agarwal, H., Shukla, V.K., Vibhu, I., Gupta, M., Shuka, J.P.: Ultrasonic velocities, densities, and refractive indices of binary mixtures of polyethylene glycol 250 dimethyl ether with 1-propanol and with 1-butanol. J. Solution Chem. 39, 1749–1762 (2010)

    CAS  Google Scholar 

  71. Nieves Caro, M., Trenzado, J.L., Galván, S., Romano, E., González, E., Alcalde, R., Aparicio, S.: Densities and viscosities of three binary monoglyme + 1-alcohol systems from (283.15 to 313.15) K. J. Chem. Eng. Data 58, 909–914 (2013)

    Google Scholar 

  72. Fort, R.J., Moore, W.R.: Viscosities of binary liquid mixtures. Trans. Faraday Soc. 62, 1112–1119 (1966)

    CAS  Google Scholar 

  73. Papaioannou, D., Panayiotou, C.G.: Viscosity of binary mixtures of propylamine with alkanols at moderately high pressures. J. Chem. Eng. Data 40, 202–209 (1995)

    CAS  Google Scholar 

  74. Papaioannou, D., Bridakis, M., Panayiotou, C.G.: Excess dynamic viscosity and excess volume of N-butylamine + 1-alkanol mixtures at moderately high pressures. J. Chem. Eng. Data 38, 370–378 (1993)

    CAS  Google Scholar 

  75. Schutte, R.P., Liu, T.C., Hepler, L.H.: Viscosities of mixtures of chloroform + triethylamine: analysis in terms of three components (A, B and AB2). Can. J. Chem. 67, 446–448 (1989)

    CAS  Google Scholar 

  76. Hepler, L.G., Fenby, D.V.: Thermodynamic study of complex formation between triethylamine and chloroform. J. Chem. Thermodyn. 5, 471–475 (1973)

    CAS  Google Scholar 

  77. Oswal, S.L., Prajapati, K.D., Oswal, P., Ghael, N.Y., Ijardar, S.P.: Viscosity of binary mixtures of 1-alkanol + cyclohexane, 2-alkanol + cyclohexane and 1-alkanol + methylcyclohexane at 303.15 K. J. Mol. Liq. 116, 3–82 (2005)

    Google Scholar 

  78. Sanz, L.F., González, J.A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law. XII. Densities, viscosities and refractive indices at T = (293.15 to 303.15) K for (1-heptanol, or 1-decanol + cyclohexylamine) systems. Application of the ERAS model to (1-alkanol + cyclohexylamine) mixtures. J. Chem. Thermodyn. 80, 161–171 (2015)

    CAS  Google Scholar 

  79. Sanz, L.F., González, J.A., García de la Fuente, I., Cobos, J.C.: Thermodynamics of mixtures with strong negative deviations from Raoult’s law. XIV. Density, permittivity, refractive index and viscosity data for the methanol + cyclohexylamine mixture at (293.15–303.15) K. Thermochim. Acta 631, 18–27 (2016)

    CAS  Google Scholar 

  80. Gurung, B.B., Roy, M.N.: Study of densities, viscosities and ultrasonic speeds of binary mixtures containing 1,2-dimethoxyethane and an alkan-l-ol at 298.15 K. J. Solution Chem. 35, 1587–1606 (2006)

    CAS  Google Scholar 

  81. Villamañán, M.A., Van Ness, H.C.; Int. DATA Ser., Sel. Data Mixtures, Ser. A 1, 32–37 (1985)

  82. Oswal, S.L., Desai, H.S.: Studies of viscosity and excess molar volume of binary mixtures: 1. Propylamine+1-alkanol mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 149, 359–372 (1998)

    CAS  Google Scholar 

  83. Moreau, C., Douhéret, G.: Thermodynamic behavior of water–acetonitrile mixtures excess volumes and viscosities. Thermochim. Acta 13, 385–392 (1975)

    CAS  Google Scholar 

  84. Eyring, H., Jhon, M.S.: Significant Liquid Structure. Wiley, New York (1969)

    Google Scholar 

  85. Martins, R.J., de M. Cardoso, M.J.E., Barcia, O.E.: Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind. Eng. Chem. Res. 39, 849–854 (2000)

    CAS  Google Scholar 

  86. Chen, S., Lei, Q., Fang, W.: Viscosities and densities for binary mixtures of N-methylpiperazine with methanol, ethanol, n-propanol, iso-propanol, n-butanol and iso-butanol at 293.15, 298.15 and 303.15 K. Fluid Phase Equilib. 234, 22–33 (2005)

    CAS  Google Scholar 

  87. Kehiaian, H.V., Tiné, M.R., Lepori, L., Matteoli, E., Marongiu, B.: Thermodynamics of binary mixtures containing oxaalkanes. Part 3. Monoethers, polyethers, acetals, orthoesters and cyclic monoethers + n-alkanes or cyclohexane. Fluid Phase Equilib. 46, 31–177 (1989)

    Google Scholar 

  88. Benson, G.C., Kumaran, M.K., D’Arcy, P.J.: Excess enthalpies and heat capacities for 3,6-dioxaoctane + n-heptane mixtures. Thermochim. Acta 74, 187–191 (1984)

    CAS  Google Scholar 

  89. Kohler, F., Gaube, J.: Temperature-dependence of excess thermodynamic properties of mixtures and intermolecular interactions. Pol. J. Chem. 54, 1987–1993 (1980)

    CAS  Google Scholar 

  90. Fuchs, R., Krenzer, L., Gaube, J.: Excess properties of binary mixtures composed of a polar component and an alkane. Ber. Bunsenges. Phys. Chem. 88, 642–649 (1984)

    CAS  Google Scholar 

  91. Shukla, K.P., Chialvo, A.A., Haile, J.M.: Thermodynamic excess properties in binary fluid mixtures. Ind. Eng. Chem. Res. 27, 664–671 (1988)

    CAS  Google Scholar 

  92. González, J.A., Hevia, F., Sanz, L.F., García de la Fuente, I., Cobos, J.C.: Characterization of 1-alkanol + strongly polar compound mixtures from thermophysical data and the application of the Kirkwood–Buff integrals and Kirkwood–Fröhlich formalisms. Fluid Phase Equilib. 492, 41–54 (2019)

    Google Scholar 

  93. González, B., Calvar, N., Gómez, E., Domínguez, A.: Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T= (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 39, 1578–2588 (2007)

    Google Scholar 

  94. Yang, C., Lai, H., Liu, Z., Ma, P.: Densities and viscosities of diethyl carbonate + toluene, + methanol, and + 2-propanol from (293.15 to 363.15) K. J. Chem. Eng. Data 51, 584–589 (2006)

    CAS  Google Scholar 

  95. Ku, H.-C., Tu, C.-H.: Densities and viscosities of seven glycol ethers from 288.15 K to 343.15 K. J. Chem. Eng. Data 45, 391–394 (2000)

    CAS  Google Scholar 

  96. Xu, Q., Sun, S., Lan, G., Xiao, J., Zhang, J., Wei, X.: Excess properties and spectral investigation for the binary system diethylene glycol dimethyl ether + water at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 60, 2–10 (2014)

    Google Scholar 

  97. Carvalho, P.J., Fonseca, C.H.G., Moita, M.-L.C.J., Santos, A.F.S., Coutinho, J.A.P.: Thermophysical properties of glycols and glymes. J. Chem. Eng. Data 60, 3721–3737 (2015)

    CAS  Google Scholar 

  98. Rivas, M.A., Iglesias, T.P., Pereira, S.M., Banerji, N.: On the permittivity and density measurements of binary systems of triglyme + (n-nonane or n-dodecane) at various temperatures. J. Chem. Thermodyn 37, 61–71 (2005)

    CAS  Google Scholar 

  99. Kodama, D., Kanakubo, M., Kokubo, M., Hashimoto, S., Nanjo, H., Kato, M.: Density, viscosity, and solubility of carbon dioxide in glymes. Fluid Phase Equilib. 302, 103–108 (2011)

    CAS  Google Scholar 

  100. Conesa, A., Shen, S., Coronas, A.: Liquid densities, kinematic viscosities, and heat capacities of some ethylene glycol dimethyl ethers at temperatures from 283.15 to 423.15 K. Int. J. Thermophys. 19, 1343–1358 (1998)

    CAS  Google Scholar 

  101. Manchanda, H.K., Trivedi, T.J., Kumar, A.: Volumetric and surface properties of aqueous mixtures of polyethers at T = (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 56, 2669–2676 (2011)

    CAS  Google Scholar 

  102. Zivkovicz, E.M., Bajic, D.M., Radovic, I.R., Serbanovic, S.P., Kijevcanin, M.L.: Volumetric and viscometric behavior of the binary systems ethyl lactate +1,2-propanediol, +1,3-propanediol, + tetrahydrofuran and + tetraethylene glycol dimethyl ether. New UNIFAC–VISCO and ASOG–VISCO parameters determination. Fluid Phase Equilib. 373, 1–19 (2014)

    Google Scholar 

  103. Pal, A., Singh, Y.P.: Viscosity in water + ethylene glycol dimethyl, + diethylene glycol dimethyl, + triethylene glycol dimethyl, and + tetraethylene glycol dimethyl ethers at 298.15 K. J. Chem. Eng. Data 41, 1008–1011 (1996)

    CAS  Google Scholar 

  104. Begum, S.K., Clarke, R.J., Ahmed, M.S., Begum, S., Saleh, M.A.: Volumetric, viscosimetric and surface properties of aqueous solutions of triethylene glycol, tetraethylene glycol, and tetraethylene glycol dimethyl ether. J. Mol. Liq. 177, 11–18 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from the Consejería de Educación y Cultura de Castilla y León, under Project VA100G19 (Apoyo a GIR, BDNS: 425389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, J.A., Martínez, F.J., Sanz, L.F. et al. Volumetric and Viscosimetric Measurements for Methanol + CH3–O–(CH2CH2O)n–CH3 (n = 2, 3, 4) Mixtures at (293.15–303.15) K and Atmospheric Pressure: Application of the ERAS Model. J Solution Chem 49, 332–352 (2020). https://doi.org/10.1007/s10953-020-00964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00964-6

Keywords

Navigation