Skip to main content

Advertisement

Log in

Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polysiloxanes have been found to be the most important and commercial family of synthetic inorganic polymers. The unique structure of the siloxane bond provides them with unusual features such as a high bond angle, nearly inexistent torsional barrier and a semi-ionic character due to the difference of electronegativities between the silicon and oxygen atoms. Also, silicon-based polymers have been used for the delivery of pharmaceutical and diagnostic compounds involving the use of nanoparticles with different shapes and sizes, as well as hydrogels, including those based on silicon compounds. Hydrogels based on silicon polyolates are rather promising. Some of them exhibit pronounced anti-inflammatory, regenerating, and protective activity, readily penetrate the organism and facilitate drug penetration into the tissues. Due to these properties, polysiloxanes have encountered a big opportunity as an important material in the area of biomedical engineering; the big influence they have in the area of prosthetic dentistry, tissue engineering, cell growth, wounded skin treatments is noteworthy. For the reasons briefly described above, we consider the fact of doing a review about how the polysiloxanes have been used over the years as polymeric matrices that are used in several applications in the field of biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ROP:

Ring-opening polymerization

DDS:

Dichlorodimethylsilane

D4 :

Octamethylcyclotetrasiloxane

D3 :

Hexamethylcyclotrisiloxane

D6 :

Dodecamethylcyclohexasiloxane

T m :

Melting point temperature

T g :

Glass transition temperature

\(\langle R^2\rangle^{1/2}\) :

Mean-square end–end distance of the chain

M c :

Molecular weight of cross-link

M n :

Number average molecular weight

IPN:

Interpenetrating polymer networks

PU:

Polyurethanes

PMMA:

Poly(meth)acrylates

PS:

Polystyrene

PPhO:

Poly(2,6-dimethyl-1,4-phenyleneoxide)

POSS:

Polyhedral oligomeric silsesquioxanes

LCE:

Liquid crystalline elastomer

PALS:

Positron annihilation lifetime spectroscopy

WAXD:

Wide-angle X-ray diffraction

SAXS:

Small-angle X-ray scattering

M e :

Entanglement spacing

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimetry

TEOS:

Tetraethylorthosilicate

RTV:

Room-temperature vulcanization

PSM:

Plasma-surface modification

APS:

Aminopropyl-modified silica

CPPS:

γ-Chloropropyl groups

PEO:

Polyethylene oxide

PUUS:

Poly(urethane–urea–siloxane)

SR:

Silicone rubber

HCR:

High-consistency silicone rubbers

PHEMA:

Poly(2-hydroxyethyl methacrylate)

CPPS:

Polysiloxanes containing chloropropyl groups

APPS:

Poly(dimethyl-co-3-aminopropylmethyl) silicone oil

AEAPPS:

Poly(dimethyl-co-3-(2-aminoethylamino)propyl) silicone oil

PVDF-HFP:

Poly(vinylidenefluoride-co-hexafluoropropylene)

PSx:

Polysiloxane-comb-propyl(triethylene oxide)

LiTFSI:

Lithiumbis(trifluoromethane)sulfonimide

AR:

Acrylic rubber

SWNT:

Single-wall carbon nanotubes

MWCNT:

Multi-wall carbon nanotubes

PSM:

Plasma-surface modification

MDI:

4,40-Methylenediphenyl diisocyanate

TDI:

Toluene diisocyanate

H-MDI:

Hexamthylene diisocyanate

FBGCs:

Foreign body giant cells

PCU:

Polycarbonate soft segments

XPS:

X-ray photoelectron spectroscopy

Bis-GMA:

Diglycidyl ether of bisphenol A

COF:

Kinetic coefficient of friction

7OTCS:

7-Octenyltrichlorosilane

nOTCS:

n-Octyltrichlorosilane

DBSA:

Dodecylbenzene sulfonic acid

CTAB:

Cetyltrimethylammonium bromide

DC:

Direct current

TC:

Thermal conductivity

MEMS:

Microelectromechanical systems

FDA:

US food and drug administration

PEG:

Poly(ethylene glycol)

HLB:

Hydrophilic–lipophilic balance

PVS:

Polyvinyl siloxane

CD:

Complete denture

PMMA:

Poly(methyl methacrylate)

PHFIM:

Poly(hexa-fluoroisopropyl methacrylate)

SiHy:

Silicone hydrogel

BHT:

Butylated hydroxytoluene

HEMA:

2-Hydroxyethyl methacrylate

(PHEMA-co-PEGMEA):

Poly(2-hydroxyethylmethacrylate)-co-poly(ethyleneglycol)methyletheracrylate

HMSC:

Human mesenchymal stem cells

DOX:

Doxycycline

GFP:

Green fluorescent reporter

OS:

Ocular surface

LESC:

Limbal epithelial stem cells

LSCD:

Limbal stem cell deficiency

SPV-H:

Siloxane-doped poly(lactic acid)/vaterite composite coated with hydroxycarbonate apatite

MSC:

Mesenchymal stem cells

HOB:

Human osteoblasts

PV-H:

Poly(lactic acid)/vaterite composite coated with hydroxyapatite

Si-CCPC:

Calcium carbonate/siloxane-containing poly-(lactic acid) composite

b-HA(Si):

Bone-like hydroxyapatite layer containing silicon species

MC3T3-E1:

Osteoblast-like cells

SBF:

Simulated body fluid

PCL:

Poly(caprolactone)

3DPCL:

3D Insert PCL scaffolds

E a :

Elastic modulus

PSA:

Pressure-sensitive adhesives

SAFT:

Shear adhesion failure temperature

DCX:

Dicloxacillin

HA:

Hyaluronic acid

TRIS:

Tris(trimethylsiloxy)-3-methacryloxypropyl-silane

NVP:

N-Vinyl pyrrolidone

NOCC:

N,O-Carboxymethyl chitosan

PMSC CAPNs:

PDMS-cross-linked-NOCC polymer networks

PBW:

Proton beam writing

CFU:

Colony formation units

PPO:

Poly(propylene oxide)

PVA:

Poly(vinyl alcohol)

PAAc:

Poly(acrylic acid)

EGDMA:

Ethylene glycol dimethacrylate

PLA:

Poly(lactic acid)

PVAc:

Poly(vinyl acetate)

PAAm:

Polyacrylamide

PAN:

Polyacrylonitrile

References

  1. De Buyl F (2001) Silicone sealants and structural adhesives. Int J Adhes Adhes 21:411–422. https://doi.org/10.1016/S0143-7496(01)00018-5

    Article  Google Scholar 

  2. Mark JE (2004) Some interesting things about polysiloxanes. Acc Chem Res 37:946–953. https://doi.org/10.1021/ar030279z

    Article  CAS  PubMed  Google Scholar 

  3. Mark JE, Allcock HR, West R (2005) Inorganic polymers, 2nd edn. Oxford University Press, New York

    Google Scholar 

  4. Yilgör E, Yilgör I (2014) Silicone containing copolymers: synthesis, properties and applications. Prog Polym Sci 39:1165–1195. https://doi.org/10.1016/j.progpolymsci.2013.11.003

    Article  CAS  Google Scholar 

  5. Noll W (1968) Chapter 6—the polymeric organosiloxanes. In: Noll W (ed) Chemistry and technology of silicones. Academic Press, pp 246–331

  6. Noll W (1968) Chapter 7—other organosilicon polymers. In: Noll W (ed) Chemistry and technology of silicones. Academic Press, pp 332–385

  7. Chojnowski J, Cypryk M, Fortuniak W et al (2003) Controlled synthesis of all siloxane-functionalized architectures by ring-opening polymerization. In: Clarson SJ, Fitzgerald JJ, Owen MJ, Smith SD, Van Dyke MR (eds) Synthesis and properties of silicones and silicone-modified materials. American Chemical Society, pp 2–12

  8. Ganachaud F, Boileau S (2009) Siloxane-containing polymers. In: Dubois P, Coulembier Olivier RJ (ed) Handbook of ring-opening polymerization, First. Wiley, pp 65–95

  9. Sun CN, Shen MM, Deng LL et al (2014) Kinetics of ring-opening polymerization of octamethylcyclotetrasiloxane in microemulsion. Chin Chem Lett 25:621–626. https://doi.org/10.1016/j.cclet.2013.12.021

    Article  CAS  Google Scholar 

  10. Vallejo-Montesinos J, Villegas A, Jacobo-Azuara A et al (2012) Synthetic and natural silica-aluminates as inorganic acidic catalysts in ring opening polymerization of cyclosiloxanes. Appl Organomet Chem 26:362. https://doi.org/10.1002/aoc.2873

    Article  CAS  Google Scholar 

  11. Yactine B, Ratsimihety A, Ganachaud F (2010) Do-it-yourself functionalized silicones part 2: synthesis by ring opening polymerization of commercial cyclosiloxanes. Polym Adv Technol 21:139–149. https://doi.org/10.1002/pat.1509

    Article  CAS  Google Scholar 

  12. Vallejo-Montesinos J, Villegas A, Jacobo-Azuara A et al (2012) Synthesis and properties in solution of Gaussian homo asymmetric polysiloxanes with a bulky side group. J Inorg Organomet Polym Mater 22:1332–1340. https://doi.org/10.1007/s10904-012-9770-0

    Article  CAS  Google Scholar 

  13. Yactine B, Ganachaud F, Senhaji O, Boutevin B (2005) Facile manufacture and storage of poly(methylhydrogenosiloxane)s. Macromolecules 38:2230–2236. https://doi.org/10.1021/ma047912w

    Article  CAS  Google Scholar 

  14. Cao J, Zuo Y, Wang D et al (2017) Functional polysiloxanes: a novel synthesis method and hydrophilic applications. New J Chem 41:8546–8553. https://doi.org/10.1039/C7NJ01294B

    Article  CAS  Google Scholar 

  15. McInnes SJP, Voelcker NH (2009) Silicon-polymer hybrid materials for drug delivery. Future Med Chem 1:1051–1074. https://doi.org/10.4155/fmc.09.90

    Article  CAS  PubMed  Google Scholar 

  16. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  17. Paul DR, Mark JE (2010) Fillers for polysiloxane (“silicone”) elastomers. Prog Polym Sci 35:893–901. https://doi.org/10.1016/j.progpolymsci.2010.03.004

    Article  CAS  Google Scholar 

  18. Mark JE (1991) Some novel polysiloxane elastomers and inorganic–organic composites. J Inorg Organomet Polym 1:431–448. https://doi.org/10.1007/BF00683510

    Article  CAS  Google Scholar 

  19. Tang MY, Letton A, Mark JE (1984) Impact resistance of unifilled and filled bimodal thermosets of poly(dimethylsiloxane). Colloid Polym Sci 262:990–992. https://doi.org/10.1007/BF01490032

    Article  CAS  Google Scholar 

  20. Mark JE (2006) Some novel polymeric nanocomposites some novel polymeric nanocomposites. Acc Chem Res 39:881–888. https://doi.org/10.1021/ar040062k

    Article  CAS  PubMed  Google Scholar 

  21. Rath SK, Sharma SK, Sudarshan K et al (2016) Subnanoscopic inhomogeneities in model end-linked PDMS networks probed by positron annihilation lifetime spectroscopy and their effects on thermomechanical properties. Polymer (Guildf) 101:358–369. https://doi.org/10.1016/j.polymer.2016.08.094

    Article  CAS  Google Scholar 

  22. Urayama K, Kohjiya S (1997) Uniaxial elongation of deswollen polydimethylsiloxane networks with supercoiled structure. Polymer (Guildf) 38:955–962. https://doi.org/10.1016/S0032-3861(96)00576-9

    Article  CAS  Google Scholar 

  23. Urayama K, Kohjiya S (1998) Extensive stretch of polysiloxane network chains with random- and super-coiled conformations. Eur Phys J B 2:75–78. https://doi.org/10.1007/s100510050227

    Article  CAS  Google Scholar 

  24. Yoo SH, Yee L, Cohen C (2010) Effect of network structure on the stress–strain behaviour of endlinked PDMS elastomers. Polymer (Guildf) 51:1608–1613. https://doi.org/10.1016/j.polymer.2010.01.067

    Article  CAS  Google Scholar 

  25. Andre S, Rousseau A, Boutevin B, Caporiccio G (2002) New fluorinated thermoplastic elastomers. I. The synthesis and thermal characteristics of α,ω-dihydrosilane hybrid. J Polym Sci 40:4485–4492

    Article  CAS  Google Scholar 

  26. Dong F, Ma D, Feng S (2016) Aminopropyl-modified silica as cross-linkers of polysiloxane containing γ-chloropropyl groups for preparing heat-curable silicone rubber. Polym Test 52:124–132. https://doi.org/10.1016/j.polymertesting.2016.04.011

    Article  CAS  Google Scholar 

  27. Xue L, Zhang Y, Zuo Y et al (2013) Preparation and characterization of novel UV-curing silicone rubber via thiol-ene reaction. Mater Lett 106:425–427. https://doi.org/10.1016/j.matlet.2013.05.084

    Article  CAS  Google Scholar 

  28. Bischoff R, Cray SE (1999) Polysiloxanes in macromolecular architecture. Prog Polym Sci 24:185–219. https://doi.org/10.1016/S0079-6700(99)00006-4

    Article  CAS  Google Scholar 

  29. Huang W-C, Chen S-Y, Liu D-M (2012) An amphiphilic silicone-modified polysaccharide molecular hybrid with in situ forming of hierarchical superporous architecture upon swelling. Soft Matter 8:10868. https://doi.org/10.1039/c2sm26361k

    Article  CAS  Google Scholar 

  30. Tugui C, Vlad S, Iacob M et al (2016) Interpenetrating poly(urethane–urea)–polydimethylsiloxane networks designed as active elements in electromechanical transducers. Polym Chem 7:2709–2719. https://doi.org/10.1039/C6PY00157B

    Article  CAS  Google Scholar 

  31. Ghoreishi SG, Abbasi F, Jalili K (2016) Hydrophilicity improvement of silicone rubber by interpenetrating polymer network formation in the proximal layer of polymer surface. J Polym Res 23:115. https://doi.org/10.1007/s10965-016-1007-4

    Article  CAS  Google Scholar 

  32. Diao S, Dong F, Meng J et al (2015) Preparation and properties of heat-curable silicone rubber through chloropropyl/amine crosslinking reactions. Mater Chem Phys 153:161–167. https://doi.org/10.1016/j.matchemphys.2014.12.048

    Article  CAS  Google Scholar 

  33. Cznotka E, Jeschke S, Wiemhöfer HD (2016) Characterization of semi-interpenetrating polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) and ether-modified polysiloxane. Solid State Ionics 289:35–47. https://doi.org/10.1016/j.ssi.2016.02.016

    Article  CAS  Google Scholar 

  34. Lee GB, Sathi SG, Kim DY et al (2016) Wrinkled elastomers for the highly stretchable electrodes with excellent fatigue resistances. Polym Test 53:329–337. https://doi.org/10.1016/j.polymertesting.2016.06.003

    Article  CAS  Google Scholar 

  35. Buckley AM, Greenblatt M (1994) The sol–gel preparation of silica gels. J Chem Educ 71:599. https://doi.org/10.1021/ed071p599

    Article  CAS  Google Scholar 

  36. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. J Nanomater 2012:1687. https://doi.org/10.1155/2012/132424

    Article  CAS  Google Scholar 

  37. El-Nahhal IM, El-Ashgar NM (2007) A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications. J Organomet Chem 692:2861–2886. https://doi.org/10.1016/j.jorganchem.2007.03.009

    Article  CAS  Google Scholar 

  38. Jia L, Du Z, Zhang C et al (2008) Reinforcement of polydimethylsiloxane through formation of inorganic–organic hybrid network. Polym Eng Sci 48:74–79. https://doi.org/10.1002/pen.20856

    Article  CAS  Google Scholar 

  39. Inagi S, Ogoshi T, Miyake J et al (2007) Communications: appearing, disappearing, and reappearing fumed silica nanoparticles: tapping-mode AFM evidence in a condensation cured polydimethylsiloxane hybrid elastomer. Chem Mater 19:2141–2143. https://doi.org/10.1021/cm0626839

    Article  CAS  Google Scholar 

  40. Silva VP, Gonçalves MC, Yoshida IVP (2006) Biogenic silica short fibers as alternative reinforcing fillers of silicone rubbers. J Appl Polym Sci 101:290–299. https://doi.org/10.1002/app.23324

    Article  CAS  Google Scholar 

  41. Camarota B, Mann S, Onida B, Garrone E (2007) Hierarchical self-assembly in molecularly ordered phenylene-bridged mesoporous organosilica nanofilaments. ChemPhysChem 8:2363–2366. https://doi.org/10.1002/cphc.200700322

    Article  CAS  PubMed  Google Scholar 

  42. Patel K, Angelos S, Dichtel WR et al (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130:2382–2383. https://doi.org/10.1021/ja0772086

    Article  CAS  PubMed  Google Scholar 

  43. Pan G, Mark JE, Schaefer DW (2003) Synthesis and characterization of fillers of controlled structure based ion polyhedral oligomeric silsesquioxanel cages and their use in reinforcing siloxane elastomers. J Polym Sci Part B Polym Phys 41:3314–3323. https://doi.org/10.1002/polb.10695

    Article  CAS  Google Scholar 

  44. Phillips SH, Haddad TS, Tomczak SJ (2004) Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci 8:21–29. https://doi.org/10.1016/j.cossms.2004.03.002

    Article  CAS  Google Scholar 

  45. Liu L, Tian M, Zhang W et al (2007) Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer (Guildf) 48:3201–3212. https://doi.org/10.1016/j.polymer.2007.03.067

    Article  CAS  Google Scholar 

  46. Ryu HS, Kim DG, Lee JC (2010) Polysiloxanes containing polyhedral oligomeric silsesquioxane groups in the side chains; synthesis and properties. Polymer (Guildf) 51:2296–2304. https://doi.org/10.1016/j.polymer.2010.01.066

    Article  CAS  Google Scholar 

  47. Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2:445–475. https://doi.org/10.3390/nano2040445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tutak M, Dogan M (2015) Development of bio-active polypropylene fiber containing QA-POSS nanoparticles. Fibers Polym 16:2337–2342. https://doi.org/10.1007/s12221-015-5213-1

    Article  CAS  Google Scholar 

  49. Liu L, Ming T, Liang GH et al (2007) Polyhedral oligomeric silsesquioxane (POSS) particles in a polysiloxane melt and elastomer. Dependence of the dispersion of the POSS on its dissolution and the constraining effects of a network structure. J Macromol Sci Part A Pure Appl Chem 44:659–664. https://doi.org/10.1080/10601320701350807

    Article  CAS  Google Scholar 

  50. Kaneko Y, Iyi N, Matsumoto T, Kitamura K (2005) Preparation of higher-ordered inorganic–organic nanocomposite composed of rodlike cationic polysiloxane and polyacrylate. J Mater Chem 15:1572–1575. https://doi.org/10.1039/B418579j

    Article  CAS  Google Scholar 

  51. Pant RR, Buckley JL, Fulmer PA et al (2008) Hybrid siloxane epoxy coatings containing quaternary ammonium moieties. J Appl Polym Sci 110:3080–3086

    Article  CAS  Google Scholar 

  52. Cho SH, Andersson HM, White SR et al (2006) Polydiniethylsiloxane-based self-healing materials. Adv Mater 18:997–1000. https://doi.org/10.1002/adma.200501814

    Article  CAS  Google Scholar 

  53. Hariri K, Al Akhrass S, Delaite C et al (2007) Polymerizable oil-in-oil emulsions: poly(vinyl pyrrolidone) dispersions in reactive PDMS medium. Polym Int 56:1200–1205. https://doi.org/10.1002/pi.2258

    Article  CAS  Google Scholar 

  54. Dai L, Zhang Z, Zhao Y, Xie Z (2008) Polymeric curing agent reinforced silicone rubber composites with low viscosity and low volume shrinkage. J Appl Polym Sci 110:1624–1631. https://doi.org/10.1002/app.28595

    Article  CAS  Google Scholar 

  55. Ding T, Wang L, Wang P (2007) Changes in electrical resistance of carbon-black-filled silicone rubber composite during compression. J Polym Sci B Polym Phys 45:2700–2706. https://doi.org/10.1002/polb.21272

    Article  CAS  Google Scholar 

  56. Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA et al (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18:2221–2226. https://doi.org/10.1039/b718289a

    Article  CAS  Google Scholar 

  57. Park I-S, Kim KJ, Nam J-D et al (2007) Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi-walled carbon nanotubes as a nanofiller. Polym Eng Sci 47:1396–1405. https://doi.org/10.1002/pen.20833

    Article  CAS  Google Scholar 

  58. Jiang MJ, Dang ZM, Xu HP (2007) Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Eur Polym J 43:4924–4930. https://doi.org/10.1016/j.eurpolymj.2007.09.022

    Article  CAS  Google Scholar 

  59. Beigbeder A, Linares M, Devalckenaere M et al (2008) CH–π interactions as the driving force for silicone-based nanocomposites with exceptional properties. Adv Mater 20:1003–1007. https://doi.org/10.1002/adma.200701497

    Article  CAS  Google Scholar 

  60. Vast L, Carpentier L, Lallemand F et al (2009) Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard® 184 silicone and Young’s modulus. J Mater Sci 44:3476–3482. https://doi.org/10.1007/s10853-009-3464-1

    Article  CAS  Google Scholar 

  61. Vilčáková J, Moučka R, Svoboda P et al (2012) Effect of Surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites. Molecules 17:13157–13174. https://doi.org/10.3390/molecules171113157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cho E-C, Chang-Jian C-W, Hsiao Y-S et al (2016) Three-dimensional carbon nanotube based polymer composites for thermal management. Compos A Appl Sci Manuf 90:678–686. https://doi.org/10.1016/j.compositesa.2016.08.035

    Article  CAS  Google Scholar 

  63. Moni P, Wilhelm M, Rezwan K (2017) The influence of carbon nanotubes and graphene oxide sheets on the morphology, porosity, surface characteristics and thermal and electrical properties of polysiloxane derived ceramics. RSC Adv 7:37559–37567. https://doi.org/10.1039/C7RA01937H

    Article  CAS  Google Scholar 

  64. Wang M, Sayed SM, Guo L-X et al (2016) Multi-stimuli responsive carbon nanotube incorporated polysiloxane azobenzene liquid crystalline elastomer composites. Macromolecules 49:663–671. https://doi.org/10.1021/acs.macromol.5b02388

    Article  CAS  Google Scholar 

  65. Jindasuwan S, Sujaridworakun P, Jinawath S, Supothina S (2008) Effect of heat treatment temperature on surface topography and hydrophobicity of polydimethylsiloxane/titanium oxide hybrid films. Macromol Symp 264:90–94. https://doi.org/10.1002/masy.200850414

    Article  CAS  Google Scholar 

  66. Brennan DP, Dobley A, Sideris PJ, Oliver SRJ (2005) Swollen poly(dimethylsiloxane) (PDMS) as a template for inorganic morphologies. Langmuir 21:11994–11998. https://doi.org/10.1021/la051468o

    Article  CAS  PubMed  Google Scholar 

  67. Fang S, Hu Y, Song L et al (2008) Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci 43:1057–1062. https://doi.org/10.1007/s10853-007-2241-2

    Article  CAS  Google Scholar 

  68. Mansouri J, Wood CA, Roberts K et al (2007) Investigation of the ceramifying process of modified silicone–silicate compositions. J Mater Sci 42:6046–6055. https://doi.org/10.1007/s10853-006-1163-8

    Article  CAS  Google Scholar 

  69. Ma J, Xu J, Ren JH et al (2003) A new approach to polymer/montmorillonite nanocomposites. Polymer (Guildf) 44:4619–4624. https://doi.org/10.1016/S0032-3861(03)00362-8

    Article  CAS  Google Scholar 

  70. Schmidt DF, Clément F, Giannelis EP (2006) On the origins of silicate dispersion in polysiloxane/layered-silicate nanocomposites. Adv Funct Mater 16:417–425. https://doi.org/10.1002/adfm.200500008

    Article  CAS  Google Scholar 

  71. Ručigaj A, Krajnc M, Šebenik U (2015) Polymerization of octamethylcyclotetrasiloxane between montmorillonite nanoplatelets initiated by surface anions. Polym Bull 72:1863–1878. https://doi.org/10.1007/s00289-015-1377-5

    Article  CAS  Google Scholar 

  72. Lewicki JP, Liggat JJ, Pethrick RA et al (2008) Investigating the ageing behavior of polysiloxane nanocomposites by degradative thermal analysis. Polym Degrad Stab 93:158–168. https://doi.org/10.1016/j.polymdegradstab.2007.10.008

    Article  CAS  Google Scholar 

  73. Lewicki JP, Liggat JJ, Patel M (2009) The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym Degrad Stab 94:1548–1557. https://doi.org/10.1016/j.polymdegradstab.2009.04.030

    Article  CAS  Google Scholar 

  74. Vasilakos SP, Tarantili PA (2017) In situ monitoring by DSC and modeling of curing of vinyl polysiloxanes in layered silicate nanocomposites. J Therm Anal Calorim 127:2049–2058. https://doi.org/10.1007/s10973-016-5821-z

    Article  CAS  Google Scholar 

  75. Borivoj A, Jelena J (2000) Investigation of the effects of NAA-type zeolite on PDMS composites. J Appl Polym Sci 77:1171–1176. https://doi.org/10.1002/1097-4628(20000808)77:6%3c1171:AID-APP1%3e3.0.CO;2-C

    Article  Google Scholar 

  76. Seda KN, Seda A, Bahar E (2014) Self-assembled monolayers and nanocomposite hydrogels of functional nanomaterials for tissue engineering applications. Macromol Biosci 15:445–463. https://doi.org/10.1002/mabi.201400363

    Article  CAS  Google Scholar 

  77. Alder KI, Sherrington DC (2000) Synthesis and characterisation of Ti(IV) and Zr(IV)-containing elastomeric polysiloxane networks: a possible route to interesting heterogeneous catalysts. J Mater Chem 10:1103–1111. https://doi.org/10.1039/A907744H

    Article  CAS  Google Scholar 

  78. Varga Z, Filipcsei G, Zrínyi M (2006) Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer (Guildf) 47:227–233. https://doi.org/10.1016/j.polymer.2005.10.139

    Article  CAS  Google Scholar 

  79. Mefford OT, Vadala ML, Goff JD et al (2008) Stability of polydimethylsiloxane-magnetite nanoparticle dispersions against flocculation: interparticle interactions of polydisperse materials. Langmuir 24:5060–5069. https://doi.org/10.1021/la703146y

    Article  CAS  PubMed  Google Scholar 

  80. Prasad BLV, Stoeva SI, Sorensen CM et al (2003) Gold nanoparticles as catalysts for polymerization of alkylsilanes to siloxane nanowires, filaments, and tubes. J Am Chem Soc 125:10488–10489. https://doi.org/10.1021/ja035046h

    Article  CAS  PubMed  Google Scholar 

  81. Uhlenhaut DI, Smith P, Caseri W (2006) Color switching in gold—polysiloxane elastomeric nanocomposites. Adv Mater 18:1653–1656. https://doi.org/10.1002/adma.200600183

    Article  CAS  Google Scholar 

  82. Watanabe M (2005) Striped-pattern formation of a thin gold film deposited onto a stretched elastic silicone substrate. J Polym Sci Part B Polym Phys 43:1532–1537. https://doi.org/10.1002/polb.20464

    Article  CAS  Google Scholar 

  83. Pastoriza-Santos I, Perez-Juste J, Kickelbick G, Liz-Marzan LM (2006) Optically active poly(dimethylsiloxane) elastomer films through doping with gold nanoparticles. J Nanosci Nanotechnol 6:453–458. https://doi.org/10.1166/Jnn.2006.009

    Article  CAS  PubMed  Google Scholar 

  84. Moon M-W, Lee SH, Sun J-Y et al (2007) Wrinkled hard skins on polymers created by focused ion beam. Proc Natl Acad Sci USA 104:1130–1133. https://doi.org/10.1073/pnas.0610654104

    Article  CAS  PubMed  Google Scholar 

  85. Chu P (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R Rep 36:143–206. https://doi.org/10.1016/S0927-796X(02)00004-9

    Article  Google Scholar 

  86. Roth J, Albrecht V, Nitschke M et al (2008) Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 24:12603–12611. https://doi.org/10.1021/la801970s

    Article  CAS  PubMed  Google Scholar 

  87. Williams RL, Wilson DJ, Rhodes NP (2004) Stability of plasma-treated silicone rubber and its influence on the interfacial aspects of blood compatibility. Biomaterials 25:4659–4673. https://doi.org/10.1016/j.biomaterials.2003.12.010

    Article  CAS  PubMed  Google Scholar 

  88. Hillborg H, Sandelin M, Gedde UW (2001) Hydrophobic recovery of polydimethylsiloxane after exposure to partial discharges as a function of crosslink density. Polymer (Guildf) 42:7349–7362. https://doi.org/10.1016/S0032-3861(01)00202-6

    Article  CAS  Google Scholar 

  89. Oláh A, Hillborg H, Vancso GJ (2005) Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Appl Surf Sci 239:410–423. https://doi.org/10.1016/j.apsusc.2004.06.005

    Article  CAS  Google Scholar 

  90. Toworfe GK, Composto RJ, Adams CS et al (2004) Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J Biomed Mater Res Part A 71:449–461. https://doi.org/10.1002/jbm.a.30164

    Article  CAS  Google Scholar 

  91. Yim EKF, Reano RM, Pang SW et al (2005) Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 26:5405–5413. https://doi.org/10.1016/j.biomaterials.2005.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fuard D, Tzvetkova-Chevolleau T, Decossas S et al (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85:1289–1293. https://doi.org/10.1016/j.mee.2008.02.004

    Article  CAS  Google Scholar 

  93. Dariusz S, Cyrille H, Arnaud B et al (2008) Fluorine-based plasma treatment of biocompatible silicone elastomer: the effect of temperature on etch rate and surface properties. Plasma Process Polym 5:246–255. https://doi.org/10.1002/ppap.200700130

    Article  CAS  Google Scholar 

  94. Ha R, Nazaré S, Masood R et al (2010) Surface modification of fabrics for improved flash-fire resistance using atmospheric pressure plasma in the presence of a functionalized clay and polysiloxane. Polym Adv Technol 22:22–29. https://doi.org/10.1002/pat.1707

    Article  CAS  Google Scholar 

  95. Chen J-T, Fu Y-J, Tung K-L et al (2013) Surface modification of poly(dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes. J Memb Sci 440:1–8. https://doi.org/10.1016/j.memsci.2013.03.058

    Article  CAS  Google Scholar 

  96. Zhang Y, Yuan L, Guan Q et al (2017) Developing self-healable and antibacterial polyacrylate coatings with high mechanical strength through crosslinking by multi-amine hyperbranched polysiloxane via dynamic vinylogous urethane. J Mater Chem A 5:16889–16897. https://doi.org/10.1039/C7TA04141A

    Article  CAS  Google Scholar 

  97. Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1:161–176. https://doi.org/10.1016/j.bsbt.2015.08.002

    Article  Google Scholar 

  98. Mojsiewicz-Pienkowska K, Jamrógiewicz M, Szymkowska K, Krenczkowska D (2016) Direct human contact with siloxanes (silicones)—safety or risk part 1. Characteristics of siloxanes (silicones). Front Pharmacol 7:1–8. https://doi.org/10.3389/fphar.2016.00132

    Article  CAS  Google Scholar 

  99. Teo AJT, Mishra A, Park I et al (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472. https://doi.org/10.1021/acsbiomaterials.5b00429

    Article  CAS  Google Scholar 

  100. Turner DC, Steffen RB, Wildsmith C, Matiacio TA (2005) United States Patent. 1:0–5

  101. Silva D, Pinto LFV, Bozukova D et al (2016) Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B Biointerfaces 147:81–89. https://doi.org/10.1016/j.colsurfb.2016.07.047

    Article  CAS  PubMed  Google Scholar 

  102. Stenger M, Klein K, Grønnemose RB et al (2016) Co-release of dicloxacillin and thioridazine from catheter material containing an interpenetrating polymer network for inhibiting device-associated Staphylococcus aureus infection. J Control Release 241:125–134. https://doi.org/10.1016/j.jconrel.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  103. Rupa S, Dutta B, Singh SP, Rathor A (2013) Case report: silicone implant in augmentation of saddle nose. Recent Sci Rep 4:1661–1662

    Google Scholar 

  104. Feng Y, Borrelli M, Reichl S et al (2014) Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res 39:541–552. https://doi.org/10.3109/02713683.2013.853803

    Article  CAS  PubMed  Google Scholar 

  105. Papenburg BJ, Rodrigues ED, Wessling M, Stamatialis D (2010) Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter 6:4377. https://doi.org/10.1039/b927207k

    Article  CAS  Google Scholar 

  106. Vazhayal L, Talasila S, Abdul Azeez PM, Solaiappan A (2014) Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for pH-responsive controlled drug release. ACS Appl Mater Interfaces 6:15564–15574. https://doi.org/10.1021/am504422z

    Article  CAS  PubMed  Google Scholar 

  107. Keremidarska M, Hikov T, Radeva E et al (2014) Effect of nanodiamond modification of siloxane surfaces on stem cell behaviour. J Phys Conf Ser 558:012056. https://doi.org/10.1088/1742-6596/558/1/012056

    Article  Google Scholar 

  108. Rahimi A, Mashak A (2013) Review on rubbers in medicine: natural, silicone and polyurethane rubbers. Plast Rubber Compos 42:223–230. https://doi.org/10.1179/1743289811Y.0000000063

    Article  CAS  Google Scholar 

  109. Rios PD, Zhang X, Luo X, Shea LD (2016) Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice. Biotechnol Bioeng 113:2485–2495. https://doi.org/10.1002/bit.26005

    Article  CAS  PubMed  Google Scholar 

  110. Mohanty S, Alm M, Hemmingsen M et al (2016) 3D printed silicone-hydrogel scaffold with enhanced physicochemical properties. Biomacromolecules 17:1321–1329. https://doi.org/10.1021/acs.biomac.5b01722

    Article  CAS  PubMed  Google Scholar 

  111. Steffensen SL, Vestergaard MH, Møller EH et al (2016) Soft hydrogels interpenetrating silicone—a polymer network for drug-releasing medical devices. J Biomed Mater Res Part B Appl Biomater 104:402–410. https://doi.org/10.1002/jbm.b.33371

    Article  CAS  PubMed  Google Scholar 

  112. Tang Q, Yu JR, Chen L et al (2011) Poly(dimethyl siloxane)/poly(2-hydroxyethyl methacrylate) interpenetrating polymer network beads as potential capsules for biomedical use. Curr Appl Phys 11:945–950. https://doi.org/10.1016/j.cap.2010.12.035

    Article  Google Scholar 

  113. Zhao ZB, Xie HJ, Li YL, Jiang Y (2016) A multi-responsive multicomponent hydrogel with micro-phase separation structure: synthesis and special drug release. J Drug Deliv Sci Technol 35:184–189. https://doi.org/10.1016/j.jddst.2016.06.016

    Article  CAS  Google Scholar 

  114. Farrugia BL, Keddie DJ, George GA et al (2012) An investigation into the effect of amphiphilic siloxane oligomers on dermal fibroblasts. J Biomed Mater Res Part A 100A:1919–1927. https://doi.org/10.1002/jbm.a.33310

    Article  CAS  Google Scholar 

  115. Francis A, Detsch R, Boccaccini AR (2016) Fabrication and cytotoxicity assessment of novel polysiloxane/bioactive glass films for biomedical applications. Ceram Int 42:15442–15448. https://doi.org/10.1016/j.ceramint.2016.06.195

    Article  CAS  Google Scholar 

  116. Anfuso CD, Motta C, Satriano C et al (2012) Microcapillary-like structures prompted by phospholipase A2 activation in endothelial cells and pericytes co-cultures on a polyhydroxymethylsiloxane thin film. Biochimie 94:1860–1870. https://doi.org/10.1016/j.biochi.2012.04.021

    Article  CAS  PubMed  Google Scholar 

  117. Yu Q, Wu Z, Chen H (2015) Dual-function antibacterial surfaces for biomedical applications. Acta Biomater 16:1–13. https://doi.org/10.1016/j.actbio.2015.01.018

    Article  CAS  PubMed  Google Scholar 

  118. Shirosaki Y, Tsuru K, Hayakawa S et al (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5:346–355. https://doi.org/10.1016/j.actbio.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  119. Nair BP, Gangadharan D, Mohan N et al (2015) Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering. Mater Sci Eng C 52:333–342. https://doi.org/10.1016/j.msec.2015.03.040

    Article  CAS  Google Scholar 

  120. Özarslan AC, Yücel S (2016) Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. Mater Sci Eng C 68:350–357. https://doi.org/10.1016/j.msec.2016.06.004

    Article  CAS  Google Scholar 

  121. Trujillo S, Pérez-Román E, Kyritsis A et al (2015) Organic–inorganic bonding in chitosan-silica hybrid networks: physical properties. J Polym Sci Part B Polym Phys 53:1391–1400. https://doi.org/10.1002/polb.23774

    Article  CAS  Google Scholar 

  122. Dashnyam K, Perez RA, Singh RK et al (2014) Hybrid magnetic scaffolds of gelatin–siloxane incorporated with magnetite nanoparticles effective for bone tissue engineering. RSC Adv 4:40841–40851. https://doi.org/10.1039/c4ra06621a

    Article  CAS  Google Scholar 

  123. Tonda-Turo C, Gentile P, Saracino S et al (2011) Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent. Int J Biol Macromol 49:700–706. https://doi.org/10.1016/j.ijbiomac.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  124. Huang WC, Chen SY, Liu DM (2012) An amphiphilic silicone-modified polysaccharide molecular hybrid with in situ forming of hierarchical superporous architecture upon swelling. Soft Matter 8:10868–10876. https://doi.org/10.1039/c2sm26361k

    Article  CAS  Google Scholar 

  125. Brunelli M, Perrault CM, Lacroix D (2017) Mechanical response of 3D insert®PCL to compression. J Mech Behav Biomed Mater 65:478–489. https://doi.org/10.1016/j.jmbbm.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  126. Herklotz M, Prewitz MC, Bidan CM et al (2015) Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 60:121–129. https://doi.org/10.1016/j.biomaterials.2015.04.061

    Article  CAS  PubMed  Google Scholar 

  127. Cho EC, Chang-Jian CW, Hsiao YS et al (2016) Three-dimensional carbon nanotube based polymer composites for thermal management. Compos Part A Appl Sci Manuf 90:678–686. https://doi.org/10.1016/j.compositesa.2016.08.035

    Article  CAS  Google Scholar 

  128. Addington CP, Cusick A, Shankar RV et al (2016) Siloxane nanoprobes for labeling and dual modality functional imaging of neural stem cells. Ann Biomed Eng 44:816–827. https://doi.org/10.1007/s10439-015-1514-1

    Article  PubMed  Google Scholar 

  129. Kai D, Tan MJ, Prabhakaran MP et al (2016) Biocompatible electrically conductive nanofibers from inorganic–organic shape memory polymers. Colloids Surf B Biointerfaces 148:557–565. https://doi.org/10.1016/j.colsurfb.2016.09.035

    Article  CAS  PubMed  Google Scholar 

  130. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  131. Nagai M, Kato K, Shibata T (2016) Underwater motion of hydrogel microstructure by optofluidic lithography studied with gap control and object holding platform. Microelectron Eng 164:108–114. https://doi.org/10.1016/j.mee.2016.08.002

    Article  CAS  Google Scholar 

  132. Hogg A, Aellen T, Uhl S et al (2013) Ultra-thin layer packaging for implantable electronic devices. J Micromech Microeng 23:075001. https://doi.org/10.1088/0960-1317/23/7/075001

    Article  CAS  Google Scholar 

  133. Moustafa ME, Gadepalli VS, Elmak AA et al (2014) Large area micropatterning of cells on polydimethylsiloxane surfaces. J Biol Eng 8:24. https://doi.org/10.1186/1754-1611-8-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wessels Q, Pretorius E (2015) Development and ultra-structure of an ultra-thin silicone epidermis of bioengineered alternative tissue. Int Wound J 12:428–431. https://doi.org/10.1111/iwj.12126

    Article  PubMed  Google Scholar 

  135. Lejeune F, Christiaens F, Bernerd F (2008) Evaluation of sunscreen products using a reconstructed skin model exposed to simulated daily ultraviolet radiation: relevance of filtration profile and SPF value for daily photoprotection. Photodermatol Photoimmunol Photomed 24:249–255. https://doi.org/10.1111/j.1600-0781.2008.00370.x

    Article  PubMed  Google Scholar 

  136. Kappel RM, Klunder AJH, Pruijn GJM (2014) Silicon chemistry and silicone breast implants. Eur J Plast Surg 37:123–128. https://doi.org/10.1007/s00238-013-0914-4

    Article  Google Scholar 

  137. Ramesh R, Shingare RD, Kumar V et al (2016) Repurposing of a drug scaffold: identification of novel sila analogues of rimonabant as potent antitubercular agents. Eur J Med Chem 122:723–730. https://doi.org/10.1016/j.ejmech.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  138. Archives MN, Cancer B, Neishaboury M (2014) Acute immunologic reaction to silicone breast implant after mastectomy and immediate reconstruction: a case report and review of the literature

  139. Kim HN, Kang DH, Kim MS et al (2012) Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng 40:1339–1355. https://doi.org/10.1007/s10439-012-0510-y

    Article  PubMed  PubMed Central  Google Scholar 

  140. Rotaru I, Bujoreanu C, Bele A et al (2014) Experimental testing on free vibration behaviour for silicone rubbers proposed within lumbar disc prosthesis. Mater Sci Eng C 42:192–198. https://doi.org/10.1016/j.msec.2014.05.021

    Article  CAS  Google Scholar 

  141. Elist JJ, Shirvanian V, Lemperle G (2014) Surgical treatment of penile deformity due to curvature using a subcutaneous soft silicone implant: case report. Open J Urol 4:91–97

    Article  Google Scholar 

  142. Zhao J, Xu R, Luo G et al (2016) A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer. J Mater Chem B 4:982–989. https://doi.org/10.1039/C5TB02036K

    Article  CAS  Google Scholar 

  143. Ren L, Wang J, Yang FY et al (2010) Fabrication of gelatin–siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Mater Sci Eng C 30:437–444. https://doi.org/10.1016/j.msec.2009.12.013

    Article  CAS  Google Scholar 

  144. Stormonth-Darling JM, Saeed A, Reynolds PM, Gadegaard N (2016) Injection molding micro- and nanostructures in thermoplastic elastomers-read. Macromol Mater Eng 301:964–971

    Article  CAS  Google Scholar 

  145. Nyilas E, Ward RS (1977) Development of blood-compatible elastomers. V. Surface structure and blood compatibility of avcothane elastomers. J Biomed Mater Res 11:69–84. https://doi.org/10.1002/jbm.820110108

    Article  CAS  PubMed  Google Scholar 

  146. YíIgör Ì, Sha’aban AK, Steckle WP et al (1984) Segmented organosiloxane copolymers. 1. Synthesis of siloxane-urea copolymers. Polymer (Guildf) 25:1800–1806. https://doi.org/10.1016/0032-3861(84)90254-4

    Article  Google Scholar 

  147. Tyagi D, Yílgör I, McGrath JE, Wilkes GL (1984) Segmented organosiloxane copolymers: 2 thermal and mechanical properties of siloxane—urea copolymers. Polymer (Guildf) 25:1807–1816. https://doi.org/10.1016/0032-3861(84)90255-6

    Article  CAS  Google Scholar 

  148. Tyagi D, McGrath JE, Wilkes GL (1986) Small angle x-ray studies of siloxane-urea segmented copolymers. Polym Eng Sci 26:1371–1398. https://doi.org/10.1002/pen.760262007

    Article  CAS  Google Scholar 

  149. Wang LF, Ji Q, Glass TE et al (2000) Synthesis and characterization of organosiloxane modified segmented polyether polyurethanes. Polymer (Guildf) 41:5083–5093. https://doi.org/10.1016/S0032-3861(99)00570-4

    Article  CAS  Google Scholar 

  150. Yilgör E, Burgaz E, Yurtsever E, Yilgör İ (2000) Comparison of hydrogen bonding in polydimethylsiloxane and polyether based urethane and urea copolymers. Polymer (Guildf) 41:849–857. https://doi.org/10.1016/S0032-3861(99)00245-1

    Article  Google Scholar 

  151. Guelcher SA, Gallagher KM, Didier JE et al (2005) Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater 1:471–484. https://doi.org/10.1016/j.actbio.2005.02.007

    Article  PubMed  Google Scholar 

  152. Rebeca H, Jadwiga W, Ajay P, James R (2008) In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. J Biomed Mater Res Part A 87A:546–556. https://doi.org/10.1002/jbm.a.31823

    Article  CAS  Google Scholar 

  153. Yilgor E, Ekin Atilla G, Ekin A et al (2003) Isopropyl alcohol: an unusual, powerful, ‘green’ solvent for the preparation of silicone–urea copolymers with high urea contents. Polymer (Guildf) 44:7787–7793. https://doi.org/10.1016/j.polymer.2003.10.048

    Article  CAS  Google Scholar 

  154. Sheth JP, Aneja A, Wilkes GL et al (2004) Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer (Guildf) 45:6919–6932. https://doi.org/10.1016/j.polymer.2004.06.057

    Article  CAS  Google Scholar 

  155. Choi T, Weksler J, Padsalgikar A, Runt J (2009) Influence of soft segment composition on phase-separated microstructure of polydimethylsiloxane-based segmented polyurethane copolymers. Polymer (Guildf) 50:2320–2327. https://doi.org/10.1016/j.polymer.2009.03.024

    Article  CAS  Google Scholar 

  156. Choi T, Weksler J, Padsalgikar A, Runt J (2010) Microstructural organization of polydimethylsiloxane soft segment polyurethanes derived from a single macrodiol. Polymer (Guildf) 51:4375–4382. https://doi.org/10.1016/j.polymer.2010.07.030

    Article  CAS  Google Scholar 

  157. Choi T, Masser KA, Moore E et al (2011) Segmented polyurethanes derived from novel siloxane–carbonate soft segments for biomedical applications. J Polym Sci Part B Polym Phys 49:865–872. https://doi.org/10.1002/polb.22260

    Article  CAS  Google Scholar 

  158. Yilgor I, Eynur T, Yilgor E, Wilkes GL (2009) Contribution of soft segment entanglement on the tensile properties of silicone-urea copolymers with low hard segment contents. Polymer (Guildf) 50:4432–4437. https://doi.org/10.1016/j.polymer.2009.07.016

    Article  CAS  Google Scholar 

  159. Yilgor I, Eynur T, Bilgin S et al (2011) Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer (Guildf) 52:266–274. https://doi.org/10.1016/j.polymer.2010.11.040

    Article  CAS  Google Scholar 

  160. Pongkitwitoon S, Hernández R, Weksler J et al (2009) Temperature dependent microphase mixing of model polyurethanes with different intersegment compatibilities. Polymer (Guildf) 50:6305–6311. https://doi.org/10.1016/j.polymer.2009.10.067

    Article  CAS  Google Scholar 

  161. Jones JA, Dadsetan M, Collier TO et al (2004) Macrophage behavior on surface-modified polyurethanes. J Biomater Sci Polym Ed 15:567–584. https://doi.org/10.1163/156856204323046843

    Article  CAS  PubMed  Google Scholar 

  162. Padsalgikar A, Cosgriff-Hernandez E, Gallagher G et al (2015) Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing. J Biomed Mater Res Part B Appl Biomater 103:159–168. https://doi.org/10.1002/jbm.b.33161

    Article  CAS  PubMed  Google Scholar 

  163. Gallagher G, Padsalgikar A, Tkatchouk E et al (2017) Environmental stress cracking performance of polyether and PDMS-based polyurethanes in an in vitro oxidation model. J Biomed Mater Res Part B Appl Biomater 105:1544–1558. https://doi.org/10.1002/jbm.b.33691

    Article  CAS  PubMed  Google Scholar 

  164. Arnold CA, Summers JD, Chen YP et al (1989) Structure–property behaviour of soluble polyimide–polydimethylsiloxane segmented copolymers. Polymer (Guildf) 30:986–995. https://doi.org/10.1016/0032-3861(89)90068-2

    Article  CAS  Google Scholar 

  165. Ha-Chul K, Song JH, Wilkes GL et al (2018) Electron beam effects on polymers. II. Surface modification of bis-GMA substrates by functionalized siloxane oligomers. J Appl Polym Sci 38:1515–1533. https://doi.org/10.1002/app.1989.070380809

    Article  Google Scholar 

  166. Yilgor I, Steckle WP, Yilgor E et al (1989) Novel triblock siloxane copolymers: synthesis, characterization, and their use as surface modifying additives. J Polym Sci Part A Polym Chem 27:3673–3690. https://doi.org/10.1002/pola.1989.080271110

    Article  CAS  Google Scholar 

  167. Smith SD, DeSimone JM, Huang H et al (1992) Synthesis and characterization of poly(methyl methacrylate)-g-poly(dimethylsiloxane)copolymers. I. Bulk and surface characterization. Macromolecules 25:2575–2581. https://doi.org/10.1021/ma00036a002

    Article  CAS  Google Scholar 

  168. Risch BG, Rodrigues DE, Lyon K et al (1996) Structure–property behaviour of poly(ether ether ketone)-polydimethylsiloxane block copolymers and their ketamine precursors. Polymer (Guildf) 37:1229–1242. https://doi.org/10.1016/0032-3861(96)80850-0

    Article  CAS  Google Scholar 

  169. Kim YS, Yang J, Wang S et al (2002) Surface and wear behavior of bis-(4-hydroxyphenyl) cyclohexane (bis-Z) polycarbonate/polycarbonate–polydimethylsiloxane block copolymer alloys. Polymer (Guildf) 43:7207–7217. https://doi.org/10.1016/S0032-3861(02)00465-2

    Article  CAS  Google Scholar 

  170. Zhao N, Xie Q, Weng L et al (2005) Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution. Macromolecules 38:8996–8999. https://doi.org/10.1021/ma051560r

    Article  CAS  Google Scholar 

  171. Yilgor I, Bilgin S, Isik M, Yilgor E (2012) Facile preparation of superhydrophobic polymer surfaces. Polymer (Guildf) 53:1180–1188. https://doi.org/10.1016/j.polymer.2012.01.053

    Article  CAS  Google Scholar 

  172. Liang S, Choi UH, Liu W et al (2012) Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates. Chem Mater 24:2316–2323. https://doi.org/10.1021/cm3005387

    Article  CAS  Google Scholar 

  173. Liang S, Oreilly MV, Choi UH et al (2014) High ion content siloxane phosphonium ionomers with very low Tg. Macromolecules 47:4428–4437. https://doi.org/10.1021/ma5001546

    Article  CAS  Google Scholar 

  174. Liang S, Chen Q, Choi UH et al (2015) Plasticizing Li single-ion conductors with low-volatility siloxane copolymers and oligomers containing ethylene oxide and cyclic carbonates. J Mater Chem A 3:21269–21276. https://doi.org/10.1039/c5ta06042g

    Article  CAS  Google Scholar 

  175. Hyeok Choi U, Liang S, Chen Q et al (2016) Segmental dynamics and dielectric constant of polysiloxane polar copolymers as plasticizers for polymer electrolytes. ACS Appl Mater Interfaces 8:3215–3225. https://doi.org/10.1021/acsami.5b10797

    Article  CAS  PubMed  Google Scholar 

  176. Camós Noguer A, Latipov R, Madsen FB et al (2018) Visualization of the distribution of surface-active block copolymers in PDMS-based coatings. Prog Org Coat 120:179–189. https://doi.org/10.1016/j.porgcoat.2018.03.011

    Article  CAS  Google Scholar 

  177. Lei Y, Zhou S, Dong C et al (2018) PDMS tri-block copolymers bearing quaternary ammonium salts for epidermal antimicrobial agents: synthesis, surface adsorption and non-skin-penetration. React Funct Polym 124:20–28. https://doi.org/10.1016/j.reactfunctpolym.2018.01.007

    Article  CAS  Google Scholar 

  178. Hernández-Maya FM, Cañizares-Macías MP (2018) Evaluation of the activity of β-glucosidase immobilized on polydimethylsiloxane (PDMS) with a microfluidic flow injection analyzer with embedded optical fibers. Talanta 185:53–60. https://doi.org/10.1016/j.talanta.2018.03.038

    Article  CAS  PubMed  Google Scholar 

  179. Teo AJT, Mishra A, Park I et al (2016) Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2:454–472. https://doi.org/10.1021/acsbiomaterials.5b00429

    Article  CAS  Google Scholar 

  180. Van Ardenne N, Vanderwegen J, Van Nuffelen G et al (2011) Medialization thyroplasty: vocal outcome of silicone and titanium implant. Eur Arch Oto-Rhino-Laryngol 268:101–107. https://doi.org/10.1007/s00405-010-1327-7

    Article  Google Scholar 

  181. Hassler C, Von Metzen RP, Ruther P, Stieglitz T (2010) Characterization of parylene C as an encapsulation material for implanted neural prostheses. J Biomed Mater Res Part B Appl Biomater 93:266–274. https://doi.org/10.1002/jbm.b.31584

    Article  CAS  PubMed  Google Scholar 

  182. Lachhman S, Zorman CA, Ko WH (2012) Multi-layered poly-dimethylsiloxane as a non-hermetic packaging material for medical MEMS. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society EMBS, pp 1655–1658. https://doi.org/10.1109/embc.2012.6346264

  183. Qin Y, Howlader MMR, Deen MJ et al (2014) Polymer integration for packaging of implantable sensors. Sensors Actuat B Chem 202:758–778. https://doi.org/10.1016/j.snb.2014.05.063

    Article  CAS  Google Scholar 

  184. Van Zele D, Heymans O (2004) Breast implants: a review. Acta Chir Belg 104:158–165. https://doi.org/10.1080/00015458.2004.11679528

    Article  PubMed  Google Scholar 

  185. Abbasi F, Mirzadeh H, Katbab AA (2001) Modification of polysiloxane polymers for biomedical applications: a review. Polym Int 50:1279–1287. https://doi.org/10.1002/pi.783

    Article  CAS  Google Scholar 

  186. Daniels AU (2012) Silicone breast implant materials. Swiss Med Wkly 142:1–12. https://doi.org/10.4414/smw.2012.13614

    Article  CAS  Google Scholar 

  187. Brandon HJ, Jerina KL, Wolf CJ, Young VL (2003) Biodurability of retrieved silicone gel breast implants. Plast Reconstr Surg 111:2295–2306. https://doi.org/10.1097/01.PRS.0000060795.16982.1C

    Article  PubMed  Google Scholar 

  188. Taylor RB, Eldred DE, Kim G et al (2008) Assessment of silicone gel breast implant biodurability by NMR and EDS techniques. J Biomed Mater Res Part A 85:684–691. https://doi.org/10.1002/jbm.a.31589

    Article  CAS  Google Scholar 

  189. Zambacos GJ, Molnar C, Mandrekas AD (2013) Silicone lymphadenopathy after breast augmentation: case reports, review of the literature, and current thoughts. Aesthetic Plast Surg 37:278–289. https://doi.org/10.1007/s00266-012-0025-9

    Article  PubMed  Google Scholar 

  190. U.S. Food and Drug Administration (FDA) (2011) FDA update on the safety of silicone gel-filled breast implants center for devices and radiological health. 63

  191. Rücker C, Kümmerer K (2015) Environmental chemistry of organosiloxanes. Chem Rev 115:466–524. https://doi.org/10.1021/cr500319v

    Article  CAS  PubMed  Google Scholar 

  192. Pirmoradi FN, Ou K, Jackson JK, et al (2013) Controlled delivery of antiangiogenic drug to human eye tissue using a MEMS device. In: Proceedings of the IEEE international conference on micro electro mechanical systems, pp 1–4. https://doi.org/10.1109/memsys.2013.6474161

  193. Lo R, Li PY, Saati S et al (2009) A passive MEMS drug delivery pump for treatment of ocular diseases. Biomed Microdev 11:959–970. https://doi.org/10.1007/s10544-009-9313-9

    Article  CAS  Google Scholar 

  194. Hogan NC, Talei-Franzesi G, Abudayyeh O et al (2012) Low-cost, flexible polymer arrays for long-term neuronal culture. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 1010:803–806. https://doi.org/10.1109/EMBC.2012.6346053

    Article  Google Scholar 

  195. Sanchez W, Hynard N, Evans J, George G (2003) The identification of mobile species from silicone gels used in burns scar remediation. Silicon Chem 2:1–10. https://doi.org/10.1023/B:SILC.0000047899.37607.53

    Article  CAS  Google Scholar 

  196. Sanchez W, Evans J, George G (2005) Silicone polymers in scar remediation: the role of migration of oligomers through stratum corneum. Aust J Chem 58:447–450. https://doi.org/10.1071/CH05056

    Article  CAS  Google Scholar 

  197. Chetoni P, Di Colo G, Grandi M et al (1998) Silicone rubber/hydrogel composite ophthalmic inserts: preparation and preliminary in vitro/in vivo evaluation. Eur J Pharm Biopharm 46:125–132. https://doi.org/10.1016/S0939-6411(97)00168-9

    Article  CAS  PubMed  Google Scholar 

  198. Exhibit E, Ito Y, Yamazaki I et al (2016) Imaging characteristics of the postoperative globe: pictorial review. Jpn J Radiol 33:1–42. https://doi.org/10.1007/s11604-016-0587-6

    Article  Google Scholar 

  199. Mandikos MN (1998) Polyvinyl siloxane impression materials: an update on clinical use. Aust Dent J 43:428–434. https://doi.org/10.1111/j.1834-7819.1998.tb00204.x

    Article  CAS  PubMed  Google Scholar 

  200. Oh WS, Park JM (2015) Use of irreversible hydrocolloid impression material to correct a defect in complete denture definitive impressions. J Prosthet Dent 113:255–256. https://doi.org/10.1016/j.prosdent.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  201. Mann K, Davids A, Range U et al (2015) Experimental study on the use of spacer foils in two-step putty and wash impression procedures using silicone impression materials. J Prosthet Dent 113:316–322. https://doi.org/10.1016/j.prosdent.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  202. Anadioti E, Aquilino SA, Gratton DG et al (2014) Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent 113:304–309. https://doi.org/10.1016/j.prosdent.2014.09.015

    Article  PubMed  Google Scholar 

  203. Scherer MD, Roh HK (2015) Radiopaque dental impression method for radiographic interpretation, digital alignment, and surgical guide fabrication for dental implant placement. J Prosthet Dent 113:343–346. https://doi.org/10.1016/j.prosdent.2014.02.022

    Article  PubMed  Google Scholar 

  204. Cho SH, Schaefer O, Thompson GA, Guentsch A (2015) Comparison of accuracy and reproducibility of casts made by digital and conventional methods. J Prosthet Dent 113:310–315. https://doi.org/10.1016/j.prosdent.2014.09.027

    Article  PubMed  Google Scholar 

  205. Varvara G, Murmura G, Sinjari B et al (2015) Evaluation of defects in surface detail for monophase, 2-phase, and 3-phase impression techniques: an in vitro study. J Prosthet Dent 113:108–113. https://doi.org/10.1016/j.prosdent.2014.08.007

    Article  PubMed  Google Scholar 

  206. Mathew S, Alani MM, Velayudhan Nair KN et al (2017) Radiofrequency glow discharge as a mode of disinfection for elastomeric impression materials. J Contemp Dent Pract 18:131–136. https://doi.org/10.5005/jp-journals-10024-2003

    Article  PubMed  Google Scholar 

  207. Kang YS, Rueggeberg F, Ramos V (2017) Effects of chlorine-based and quaternary ammonium-based disinfectants on the wettability of a polyvinyl siloxane impression material. J Prosthet Dent 117:266–270. https://doi.org/10.1016/j.prosdent.2016.07.018

    Article  CAS  PubMed  Google Scholar 

  208. Chen L, Kleverlaan CJ, Liang K, Yang D (2017) Effect of polyvinyl siloxane impression material on the polymerization of composite resin. J Prosthet Dent 117:552–558. https://doi.org/10.1016/j.prosdent.2016.06.023

    Article  CAS  PubMed  Google Scholar 

  209. Ud Din S, Parker S, Braden M et al (2018) Experimental hydrophilic vinyl polysiloxane (VPS) impression materials incorporating a novel surfactant compared with commercial VPS. Dent Mater 33:e301–e309. https://doi.org/10.1016/j.dental.2017.04.012

    Article  CAS  Google Scholar 

  210. In E, Walker E, Naguib HE (2017) Novel development of 3D printable UV-curable silicone for multimodal imaging phantom. Bioprinting 7:19–26. https://doi.org/10.1016/j.bprint.2017.05.003

    Article  Google Scholar 

  211. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46. https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  PubMed  Google Scholar 

  212. Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 151:56–64. https://doi.org/10.1016/S0168-583X(99)00118-4

    Article  CAS  Google Scholar 

  213. Hamilton RS, Mcfarlane SD (2005) Methods and apparatus for use in contact lens manufacture and packaging, WO2005011966A1

  214. Turner DC, Steffen RB, Wildsmith C, Matiacio TA (2005) Silicone hydrogel contact lens, US6861123B2, Johnson and Johnson Vision Care Inc

  215. Lai YC, Quinn ET (1999) Thermoplastic silicone-containing hydrogels, US5969076A, Bausch and Lomb Inc

  216. Gaylord N (1974) Oxygen-permeable contact lens composition, methods and article of manufacture, US3808178A

  217. Pinsley JB, Adams JP, Khanolkar A et al (2011) Silicone hydrogel contact lenses displaying reduced protein uptake, EP2283387A2, Johnson and Johnson Vision Care Inc

  218. Bauman RE, Hagmann P, Pruitt JD, Rappon JM (2012) Silicone hydrogel lenses with nano-textured surfaces, US20120314185A1, Novartis AG

  219. Pellegrini G, Traverso CE, Franzi AT et al (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993. https://doi.org/10.1016/S0140-6736(96)11188-0

    Article  CAS  PubMed  Google Scholar 

  220. Di Girolamo N, Chui J, Wakefield D, Coroneo MT (2007) Cultured human ocular surface epithelium on therapeutic contact lenses. Br J Ophthalmol 91:459–464. https://doi.org/10.1136/bjo.2006.103895

    Article  PubMed  Google Scholar 

  221. Di Girolamo N, Bosch M, Zamora K et al (2009) A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation 87:1571–1578. https://doi.org/10.1097/TP.0b013e3181a4bbf2

    Article  PubMed  Google Scholar 

  222. Dastjerdi R, Scherrieble A, Bahrizadeh S et al (2017) A key major guideline for engineering bioactive multicomponent nanofunctionalization for biomedicine and other applications: fundamental models confirmed by both direct and indirect evidence. Biomed Res Int 2017:286. https://doi.org/10.1155/2017/2867653

    Article  CAS  Google Scholar 

  223. Obata A, Kasuga T (2008) Cellular activity on siloxane-doped poly(lactic acid)/vaterite composite scaffolds. Key Eng Mater 363:399–402. https://doi.org/10.4028/www.scientific.net/KEM.361-363.399

    Article  Google Scholar 

  224. Obata A, Kasuga T (2008) Cellular compatibility of bone-like apatite containing silicon species. J Biomed Mater Res Part A 85:140–144. https://doi.org/10.1002/jbm.a.31509

    Article  CAS  Google Scholar 

  225. Wang L, Yu B, Sun LP et al (2008) Microsphere-integrated gelatin–siloxane hybrid scaffolds for bone tissue engineering: in vitro bioactivity and antibacterial activity. Front Mater Sci China 2:172–178. https://doi.org/10.1007/s11706-008-0029-1

    Article  Google Scholar 

  226. Brunelli M, Perrault CM, Lacroix D (2017) Mechanical response of 3D Insert PCL to compression. J Mech Behav Biomed Mater 65:478–489. https://doi.org/10.1016/j.jmbbm.2016.08.038

    Article  CAS  PubMed  Google Scholar 

  227. Carelli V, Coltelli S, Di Colo G et al (1999) Silicone microspheres for pH-controlled gastrointestinal drug delivery. Int J Pharm 179:73–83. https://doi.org/10.1016/S0378-5173(98)00387-1

    Article  CAS  PubMed  Google Scholar 

  228. Shaikh S, Birdi A, Qutubuddin S et al (2007) Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites. Ann Biomed Eng 35:2130–2137. https://doi.org/10.1007/s10439-007-9369-8

    Article  PubMed  PubMed Central  Google Scholar 

  229. Park HS, Lee SY, Yoon H, Noh I (2014) Biological evaluation of micro-patterned hyaluronic acid hydrogel for bone tissue engineering. Pure Appl Chem 86:1911–1922. https://doi.org/10.1515/pac-2014-0613

    Article  CAS  Google Scholar 

  230. Zhao Z-B, Xie H-J, Li Y-L, Jiang Y (2016) A multi-responsive multicomponent hydrogel with micro-phase separation structure: synthesis and special drug release. J Drug Deliv Sci Technol 35:184–189. https://doi.org/10.1016/j.jddst.2016.06.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vallejo Montesinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Calderón, J.A., Contreras López, D., Pérez, E. et al. Polysiloxanes as polymer matrices in biomedical engineering: their interesting properties as the reason for the use in medical sciences. Polym. Bull. 77, 2749–2817 (2020). https://doi.org/10.1007/s00289-019-02869-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02869-x

Keywords

Navigation