Skip to main content
Log in

Electrical, thermal behaviors and synthesis of intramolecular cobalt phthalocyanine with single-chain polymer structure

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Firstly, poly[4-(4-vinylbenzyl)oxy)phthalonitrile]-co-styrene, [poly(VBOP-co-St], which is used as a linear copolymer precursor containing phthalonitrile pendant group was prepared from copolymerization of VBOP and St by atom transfer radical polymerization method at 110 °C. Then, complex synthesis of cobalt phthalocyanine in the single-chain polymer (SCP-CoPc complex) via the intramolecular macrocyclization reaction of cobalt and phthalonitrile group in poly(VBOP-co-St) was carried out at 150 °C in the presence of excess cyclohexanol. Both linear copolymer precursor and formation of cobalt phthalocyanine within a single-chain polymer were confirmed by FT-IR, 1H-NMR, 13C-NMR and UV/Vis spectroscopy techniques. Particularly, the formation of SCP-CoPc complex was characterized by almost disappearance of –C≡N band at 2230 cm−1 of the FT-IR and appearance of Q band around 672 nm and the B band in the near UV region at 350 nm of UV/Vis spectroscopy. The pure poly(VBOP-co-St), SCP-CoPc complex and the residue SCP-CoPc complex heated to 500 °C were characterized by SEM images, and the element analyses were estimated from X-ray energy dispersive spectroscopy (X-ray EDS). The EDS elemental analysis results of the residual of SCP-CoPc complex degraded to 500 °C showed that CoO [cobalt(II)oxide] compound occurred. The thermal properties of poly(VBOP-co-St) and SCP-CoPc complex were investigated through thermogravimetric analysis and differential scanning calorimeter. The conducting nanographene-based SCP-CoPc composites were prepared. DC and AC electrical conductivity and dielectric properties were investigated. The ac dielectric measurements of poly(VBOP-co-St), SCP-CoPc complex and composites were investigated at room temperature between 100 and 20 kHz depending on the alternating current conductivities. Also, the activation energy profile of SCP-CoPc/4% (by wt) nanographene composite was revealed by measuring the DC conductivity of individual composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lyon CK, Prasher A, Hanlon AM, Tuten BT, Tooley CA, Frank PG, Berda EB (2014) A brief user’s guide to single-chain nanoparticles. Polym Chem 6:181–197

    Article  Google Scholar 

  2. Landfester K, Bechthold N, Förster S, Antonietti M (1999) Evidence for the preservation of the particle identity in miniemulsion polymerization. Macromol Rapid Commun 20:81–84

    Article  CAS  Google Scholar 

  3. Gillissen MAJ, Voets IK, Meijer EW, Palmans ARA (2012) Single chain polymeric nanoparticles as compartmentalised sensors for metal ions. Polym Chem 3:3166–3174

    Article  CAS  Google Scholar 

  4. Terashima T, Mes T, De Greef TFA, Gillissen MAJ, Besenius P, Palmans ARA, Meijer EW (2011) Single-chain folding of polymers for catalytic systems in water. J Am Chem Soc 133:4742–4745

    Article  CAS  Google Scholar 

  5. Perez-Baena I, Barroso-Bujans F, Gasser U, Arbe A, Moreno AJ, Colmenero J, Pomposo JA (2013) Endowing single-chain polymer nanoparticles with enzyme-mimetic activity. ACS Macro Lett 2:775–779

    Article  CAS  Google Scholar 

  6. Huerta E, Stals PJM, Meijer EW, Palmans ARA (2012) Consequences of folding a water-soluble polymer around an organocatalyst. Angew Chem Int Ed 52:2906–29110

    Article  Google Scholar 

  7. Davis KA, Matyjaszewski K (2002) Statistical, gradient, block, and graft copolymers by controlled/living radical polymerizations. Adv Polym Sci 159:2–13

    CAS  Google Scholar 

  8. Altintas O, Barner-Kowollik C (2016) Single-chain folding of synthetic polymers: a critical update. Macro Rapid Commun 37:29–46

    Article  CAS  Google Scholar 

  9. Beers KL, Gaynor SG, Matyjaszewski K (1998) The synthesis of densely grafted copolymers by atom transfer radical polymerization. Macromol 31:9413–9415

    Article  CAS  Google Scholar 

  10. Li L, Tang Q, Li H, Hu W, Yang X, Shuai Z, Liu Y, Zhu D (2008) Organic thin-film transistors of phthalocyanines. Pure Appl Chem 80:2231–2240

    Article  CAS  Google Scholar 

  11. Loi MA, Denk P, Hoppe H, Neugebauer H, Winder C, Meissner D, Brabec C, Serdar NS, Gouloumis A, Vazquez P, Torres T (2003) Long-lived photoinduced charge separation for solar cell applications in phthalocyanine–fulleropyrrolidine dyad thin films. J Mater Chem 13:700–704

    Article  CAS  Google Scholar 

  12. Blochwitz J, Pfeiffer M, Fritz T, Leo K (1998) Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl Phys Lett 73:729–731

    Article  CAS  Google Scholar 

  13. Peyman SHA, Gabriel C (2007) Dielectric properties of tissues at microwave frequencies. Phys Med Biol 52:2229–2245

    Article  CAS  Google Scholar 

  14. Jonghwa J, Yun-Jung L, Bohyun K, Byoungjae K, Ki-Suck J, Hyun-jong P (2015) Colored single-chain nanoparticle via intramolecular copper phthalocyanines formation. Polym Chem 6:3392–3397

    Article  Google Scholar 

  15. Manley-King CI, Bergh JJ, Petzer JP (2012) Monoamine oxidase inhibition by C4-substituted phthalontriles. Bioorg Chem 40:114–124

    Article  CAS  Google Scholar 

  16. Surya PS, Saim E, Alexandre L (2010) Synthesis of highly soluble phthalocyanine from a new phthalonitrile under mild conditions. Adv Mater Lett 1(2):148–150

    Article  Google Scholar 

  17. Özge G, Tugba S, Metin A, Kasım MŞ (2017) Efficient synthesis of EDOT modified ABBB-type unsymmetrical zinc phthalocyanine: optoelectrocromic and glucose sensing properties of its copolymerization film. New J Chem 41:14080–14087

    Article  Google Scholar 

  18. Jiang Z, Ou Z, Chen N, Wang J, Huang J, Shao J, Kadish KM (2005) Synthesis, spectral and electrochemical characterization of non-aggregating α-substituted vanadium(IV)-oxo phthalocyanines. J Porphyr Phthalocyanines 9:352–360

    Article  CAS  Google Scholar 

  19. Chrissafis K (2009) Kinetics of thermal degradation of polymers complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim 95:273–283

    Article  CAS  Google Scholar 

  20. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  21. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  22. Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand 70A(6):487–523

    Article  Google Scholar 

  23. Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet 28:95–101

    Article  CAS  Google Scholar 

  24. Broido A (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci A 2 Polym Phys 1773:1761–1773

    Article  Google Scholar 

  25. Coats W, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  CAS  Google Scholar 

  26. Mehdihasan IS, Kaushal PP, Rajnikant MP (2018) Electrospun ZnO nanoparticles doped core-sheath nanofibers: characterization and antimicrobial properties. J Polym Environ 26:4376–4387

    Article  Google Scholar 

  27. Mehdihasan IS, Dijit MP, Nirmal NP, Umesh SP, Kaushal PP, Rajnikant MP (2018) Methacrylate copolymers and their composites with nano-CdS: synthesis, characterization, thermal behavior, and antimicrobial properties. Int J Ind Chem 9:153–166

    Article  Google Scholar 

  28. Açikses A, Çömez N, Biryan F (2019) Metal complexes of a homopolymer system containing diethanolamine side group: synthesis and dielectrical behaviors. J Macromol Sci Part A Pure Appl Chem 56:253–266

  29. Saad ALG, Hassan AM, Youssif MA, Ahmed MGM (1997) Studies of electrical properties of some fire-retarding poly(vinyl chloride) compositions. J Appl Polym Sci 65:27–35

    Article  CAS  Google Scholar 

  30. Biryan F, Demirelli K, Torğut G, Pıhtılı G (2017) Synthesis, thermal degradation and dielectric properties of poly[2-hydroxy,3-(1-naphthyloxy)propyl methacrylate]. Polym Bull 74(2):583–602

    Article  CAS  Google Scholar 

  31. Hema M, Selvasekerpandian S, Sakunthala A, Arunkumar D, Nithya H (2008) Structural, vibrational and electrical characterization of PVA–NH4Br polymer electrolyte system. Phys B 403:2740–2747

    Article  CAS  Google Scholar 

  32. Mondal SP, Aluguri R, Ray SK (2009) Dielectric and transport properties of carbon nanotube-CdS nanostructures embedded in polyvinyl alcohol matrix. J Appl Phys 105:114317–114323

    Article  Google Scholar 

  33. Deshmukh K, Ahamed B, Sadasivuni KK, Ponnamma D, AlMaadeed MA, Pasha SKK, Chidambaram PK (2017) Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201

    Article  CAS  Google Scholar 

  34. Yang W, Lingjie Z, Jun Z, Beibei J, Yingye J, Junkai W, Menglan W, Yonghong C, Kai W (2019) Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al2O3 core–shell particles. Polym Bull 76:3957–3970

  35. Rajesh C, Manoj KC, Unnikrishnan G, Purushothaman E (2013) Dielectric properties of short nylon-6 fiber-reinforced NBR composites. Adv Polym Technol 32:90–102

    Article  Google Scholar 

  36. Jawad SA, Al-Jundi J, El-Ghanem HM (2003) DC electrical properties of graphitized carbon-black filled rubbers. Int J Polym Mater 52(9):809–820

    Article  CAS  Google Scholar 

  37. Biryan F, Demirelli K (2017) Copolymerization of benzyl methacrylate and a methacrylate bearing benzophenoxy and hydroxyl side groups: monomer reactivity ratios, thermal studies and dielectric measurements. Fibers Polym 18(9):1629–1637

    Article  CAS  Google Scholar 

  38. Drobny JG (2012) Polymeric materials, 1st edn. Wiley, Hoboken

    Google Scholar 

  39. Shubha A, Manohara SR, Gerward L (2017) Influence of polyvinylpyrrolidone on optical, electrical, and dielectric properties of poly(2-ethyl-2-oxazoline)-polyvinylpyrrolidone blends. J Mol Liq 247:328–336

    Article  CAS  Google Scholar 

  40. Chetia JR, Maullick M, Dutta A, Dass NN (2004) Role of poly(2-dimethylaminoethylmethacerylate) salt as solid state ionics. Mater Sci Eng B 107:134–138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadir Demirelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biryan, F., Tuncer, H. & Demirelli, K. Electrical, thermal behaviors and synthesis of intramolecular cobalt phthalocyanine with single-chain polymer structure. Polym. Bull. 77, 2461–2484 (2020). https://doi.org/10.1007/s00289-019-02871-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02871-3

Keywords

Navigation