Skip to main content
Log in

Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO2-based nanocomposites with high photocatalytic performance

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work we investigated the effect of hydrothermal treatment and silica addition on the structure and photocatalytic performance of synthesized TiO2-based nanocomposites. These materials were prepared by combining sol–gel process and hydrothermal treatment, and no templates or surfactants were used in these syntheses. The optimal synthesis conditions were investigated based on the variation of the preparation parameters. Anatase TiO2 crystals were synthesized without the need of a hydrothermal treatment, but this process appeared necessary to form an anatase phase with better structural quality and high photoactivity. The heat treatment step induced competitive phenomena toward the TiO2 structural properties and its photodegradation activity, but it proved to be advantageous as long as the pore structure, anatase phase, and high specific surface area were maintained. The addition of silica was then justified, aiming to stabilize the crystalline structure of TiO2 upon heat treatment. The ideal molar ratio of Si/(Si + Ti) was 0.2 for samples heat-treated at either 500 or 700 °C. The high photocatalytic efficiency of the synthesized nanocomposites is due to the combined effect of the photoactivity of TiO2 and adsorption capacity of SiO2. When compared with a commercial TiO2 sample (Degussa Evonik P25), increasing the catalyst loading proved to greatly enhance the performance of the synthesized nanocomposite, whereas the commercial one did not follow the same trend.

Highlights

  • TiO2-SiO2 nanocomposites synthesized by sol-gel technique and hydrothermal treatment.

  • Optimization of the photocatalytic activity of hydrothermally treated TiO2.

  • Catalyst structure stabilization due to hydrothermal treatment and SiO2 addition.

  • Highest photocatalytic activity for composite with 20% of SiO2 and treated at 500 °C.

  • Combined effect of the photoactivity of TiO2 and adsorption capacity of SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  2. Chen Y, Wang K, Lou L (2004) Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J Photochem Photobiol A Chem 163:281–287

    Article  CAS  Google Scholar 

  3. Pelaez M et al. (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  4. Rossetto E, Petkowicz DI, dos Santos JHZ, Pergher SBC, Penha FG (2010) Bentonites impregnated with TiO2 for photodegradation of methylene blue. Appl Clay Sci 48:602–606

    Article  CAS  Google Scholar 

  5. Marçal L et al. (2011) Amine-functionalized titanosilicates prepared by the sol−gel process as adsorbents of the azo-dye orange II. Ind Eng Chem Res 50:239–246

    Article  CAS  Google Scholar 

  6. Rozada F, Calvo LF, García AI, Martín-Villacorta J, Otero M (2003) Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour Technol 87:221–230

    Article  CAS  Google Scholar 

  7. Herrera F, Lopez A, Mascolo G, Albers P, Kiwi J (2001) Catalytic decomposition of the reactive dye UNIBLUE a on hematite. modeling of the reactive surface. Water Res 35:750–760

    Article  CAS  Google Scholar 

  8. Cooper P (1993) Removing colour from dyehouse waste waters—a critical review of technology available. J Soc Dye Colour 109:97–100

    Article  CAS  Google Scholar 

  9. Gupta VK et al. (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17

    Article  CAS  Google Scholar 

  10. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189

    Article  CAS  Google Scholar 

  11. Sun J, Gao L, Zhang Q (2003) Synthesizing and comparing the photocatalytic properties of high surface area rutile and anatase titania nanoparticles. J Am Ceram Soc 86:1677–1682

    Article  CAS  Google Scholar 

  12. Ohno T, Tokieda K, Higashida S, Matsumura S (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphtalene. Appl Catal A Gen 244:9

    Article  CAS  Google Scholar 

  13. Sclafani A, Herrmann JM (1996) Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. J Phys Chem 100:13655–13661

    Article  CAS  Google Scholar 

  14. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  CAS  Google Scholar 

  15. Montoya IA, Viveros T, Dom~nguez JM, Canales LA, Schifter I (1992) On the effects of the sol-gel synthesis parameters on textural and structural characteristics of TiO2. Catal Lett 15:207–217

    Article  CAS  Google Scholar 

  16. Yang J, Mei S, Ferreira MF (2000) Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. Synth (Stuttg) 68:1361–1368

    Google Scholar 

  17. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  CAS  Google Scholar 

  18. Yang J, Mei S, Ferreira JMF (2001) Hydrothermal synthesis of nanosized titania powders: influence of tetraalkyl ammonium hydroxides on particle characteristics. J Am Ceram Soc 702:1696–1702

    Google Scholar 

  19. Van Grieken R, Aguado J, López-Muñoz MJ, Marugán J (2010) Sol-gel titania and titania-silica mixed oxides photocatalysts. Solid State Phenom 162:221–238

    Article  CAS  Google Scholar 

  20. Lekelefac CA, Hild J, Czermak P, Herrenbauer M (2014) Photocatalytic active coatings for lignin degradation in a continuous packed bed reactor. Int J Photoenergy 2014:502326

  21. Jafry HR, Liga MV, Li Q, Barron AR (2011) Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45:1563–1568

    Article  CAS  Google Scholar 

  22. Lekelefac CA, Czermak P, Herrenbauer M (2013) Evaluation of photocatalytic active coatings on sintered glass tubes by methylene blue. Int J Photoenergy 2013. https://doi.org/10.1155/2013/614567

    Article  CAS  Google Scholar 

  23. Dong W et al. (2007) Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. J Am Chem Soc 129:13894–13904

    Article  CAS  Google Scholar 

  24. Sayilkan F, Asilturk M, Şener S, Erdemoglu S (2007) Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2 based catalysts for rhodamine B degradation. Turk J Chem 31:211–221

    CAS  Google Scholar 

  25. Kurinobu S, Tsurusaki K, Natui Y, Kimata M, Hasegawa M (2007) Decomposition of pollutants in wastewater using magnetic photocatalyst particles. J Magn Magn Mater 310:2006–2008

    Article  CAS  Google Scholar 

  26. Li Z, Hou B, Xu Y, Wu D, Sun Y (2005) Hydrothermal synthesis, characterization, and photocatalytic performance of silica-modified titanium dioxide nanoparticles. J Colloid Interface Sci 288:149–154

    Article  CAS  Google Scholar 

  27. Nussbaum M, Paz Y (2012) Ultra-thin SiO2 layers on TiO2: improved photocatalysis by enhancing products’ desorption. Phys Chem Chem Phys 14:3392

    Article  CAS  Google Scholar 

  28. Lee D-H, Choi S-Y (2004) Preparation of photocatalytic TiO2−SiO2 thin film by sol–gel coating. Met Mater Int 10:357–360

    Article  CAS  Google Scholar 

  29. Siddiquey IA, Furusawa T, Sato M, Honda K, Suzuki N (2008) Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dye Pigment 76:754–759

    Article  CAS  Google Scholar 

  30. Resende SF, Nunes EHM, Houmard M, Vasconcelos WL (2014) Simple sol–gel process to obtain silica-coated anatase particles with enhanced TiO2–SiO2 interfacial area. J Colloid Interface Sci 433:211–217

    Article  CAS  Google Scholar 

  31. Wang X, Chen H (2015) A new approach to preparation of TiO2@void@SiO2 rattle type core shell structure nanoparticles via titanyl oxalate complex. Colloids Surf A Physicochem Eng Asp 485:25–33

    Article  CAS  Google Scholar 

  32. Sonar SK et al. (2013) Enhanced dual-effect of adsorption and photodegradation of SiO2 Embedded TiO2 hybrid catalyst for improved decolourization of methylene blue. Water Air Soil Pollut 224. https://link.springer.com/article/10.1007/s11270-013-1726-7

  33. Huang Z et al. (2014) Photocatalytic activity of phthalocyanine-sensitized TiO2–SiO2 microparticles irradiated by visible light. Mater Sci Semicond Process 25:148–152

    Article  CAS  Google Scholar 

  34. Govindhan P, Pragathiswaran C (2016) Synthesis and characterization of TiO2@SiO2–Ag nanocomposites towards photocatalytic degradation of rhodamine B and methylene blue. J Mater Sci Mater Electron 27:8778–8785

    Article  CAS  Google Scholar 

  35. Kaleji B, Mousaei M, Halakouie H, Ahmadi A (2015) Sol–gel synthesis of ZnO nanoparticles and ZnO–TiO2–SiO2 nanocomposites and their photo-catalyst investigation in methylene blue degradation. Nanostructures 5:219–225

    Google Scholar 

  36. Arai Y, Tanaka K, Khlaifat AL (2006) Photocatalysis of SiO2-loaded TiO2. J Mol Catal A Chem 243:85–88

    Article  CAS  Google Scholar 

  37. He C, Tian B, Zhang J (2010) Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity. J Colloid Interface Sci 344:382–389

    Article  CAS  Google Scholar 

  38. Dong W et al. (2010) Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Appl Catal B Environ 95:197–207

    Article  CAS  Google Scholar 

  39. Anderson C, Bard AJ (1997) Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J Phys Chem B 101:2611–2616

    Article  CAS  Google Scholar 

  40. Dong W et al. (2012) Excellent photocatalytic degradation activities of ordered mesoporous anatase TiO2–SiO2 nanocomposites to various organic contaminants. J Hazard Mater 229–230:307–320

    Article  CAS  Google Scholar 

  41. Aguado J, Vangrieken R, Lopezmunoz M, Marugan J (2006) A comprehensive study of the synthesis, characterization and activity of TiO2 and mixed TiO2/SiO2 photocatalysts. Appl Catal A Gen 312:202–212

    Article  CAS  Google Scholar 

  42. Seck EI et al. (2013) Comparative study of nanocrystalline titanium dioxide obtained through sol–gel and sol–gel-hydrothermal synthesis. J Colloid Interface Sci 400:31–40

    Article  CAS  Google Scholar 

  43. Kato R, Shimura N, Ogawa M (2008) Controlled photocatalytic ability of titanium dioxide particle by coating with nanoporous silica. Chem Lett 37:76–77

    Article  CAS  Google Scholar 

  44. Ide Y, Koike Y, Ogawa M (2011) Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates. J Colloid Interface Sci 358:245–251

    Article  CAS  Google Scholar 

  45. Wu L, Yan H, Xiao J, Li X, Wang X (2017) Characterization and photocatalytic properties of SiO2–TiO2 nanocomposites prepared through gaseous detonation method. Ceram Int 43:9377–9381

    Article  CAS  Google Scholar 

  46. Langlet M, Kim A, Audier M, Guillard C, Herrmann JM (2003) Liquid phase processing and thin film deposition of titania nanocrystallites for photocatalytic applications on thermally sensitive substrates. J Mater Sci 38:3945–3953

    Article  CAS  Google Scholar 

  47. Houmard M et al. (2007) Morphology and natural wettability properties of sol–gel derived TiO2–SiO2 composite thin films. Appl Surf Sci 254:1405–14

    Article  CAS  Google Scholar 

  48. Houmard M, Berthomé G, Joud JC, Langlet M (2011) Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol–gel route. Surf Sci 605:456–462

    Article  CAS  Google Scholar 

  49. Houmard M et al. (2008) Enhanced persistence of natural super-hydrophilicity in TiO2–SiO2 composite thin films deposited via a sol-gel route. Surf Sci 602:3364–3374

    Article  CAS  Google Scholar 

  50. Langlet M et al. (2001) Low temperature preparation of high refractive index and mechanically resistant sol–gel TiO2 films for multilayer antireflective coating applications. J Sol-Gel Sci Technol 22:139–150

    Article  CAS  Google Scholar 

  51. Starling MCVM, Castro LAS, Marcelino RBP, Leão MMD, Amorim CC (2016) Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources. Environ Sci Pollut Res 24:6222–6232

    Article  CAS  Google Scholar 

  52. Huertas RM, Fraga MC, Crespo JG, Pereira VJ (2017) Sol–gel membrane modification for enhanced photocatalytic activity. Sep Purif Technol 180:69–81

    Article  CAS  Google Scholar 

  53. Karino S, Hojo J (2010) Synthesis and characterization of TiO2-coated SiO2 particles by hydrolysis of titanium alkoxide in alcohol solvents. J Ceram Soc Jpn 118:591–596

    Article  CAS  Google Scholar 

  54. Hwang K-J et al. (2012) Adsorption and photocatalysis of nanocrystalline TiO2 particles prepared by sol–gel method for methylene blue degradation. Adv Powder Technol 23:414–418

    Article  CAS  Google Scholar 

  55. Ohtani B, Prieto-Mahaney OO, Li D, Abe R (2010) What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A Chem 216:179–182

    Article  CAS  Google Scholar 

  56. Bowering N, Walker GS, Harrison PG (2006) Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25. Appl Catal B Environ 62:208–216

    Article  CAS  Google Scholar 

  57. Nawi MA, Zain SM (2012) Enhancing the surface properties of the immobilized Degussa P-25 Ti–O2 for the efficient photocatalytic removal of methylene blue from aqueous solution. Appl Surf Sci 258:6148–6157

    Article  CAS  Google Scholar 

  58. Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86

    Article  CAS  Google Scholar 

  59. Rui Z, Wu S, Peng C, Ji H (2014) Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chem Eng J 243:254–264

    Article  CAS  Google Scholar 

  60. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  61. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7

    Article  CAS  Google Scholar 

  62. Tsega M, Dejene FB (2017) Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 3:e00246

    Article  Google Scholar 

  63. Sekiya T et al. (2004) Defects in anatase TiO2 single crystal controlled by heat treatments. J Phys Soc Jpn 73:703–710

    Article  CAS  Google Scholar 

  64. Sekiya T, Ichimura K, Igarashi M, Kurita S (2000) Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere. J Phys Chem Solids 61:1237–1242

    Article  CAS  Google Scholar 

  65. Vinogradov AV et al. (2014) The first depleted heterojunction TiO2-MOF-based solar cell. Chem Commun 50:10210–10213

    Article  CAS  Google Scholar 

  66. Kim DS, Kwak S-Y (2007) The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl Catal A Gen 323:110–118

    Article  CAS  Google Scholar 

  67. Dai S et al. (2010) Preparation of highly crystalline TiO2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res Lett 5:1829–1835

    Article  CAS  Google Scholar 

  68. Anpo M, Shima T, Kodama S, Kubokawa Y (1987) Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J Phys Chem 91:4305–4310

    Article  CAS  Google Scholar 

  69. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428

    Article  CAS  Google Scholar 

  70. Junin C, Thanachayanont C, Euvananont C, Inpor K, Limthongkul P (2008) Effects of precipitation, sol-gel synthesis conditions, and drying methods on the properties of nano-TiO2 for photocatalysis applications. Eur J Inorg Chem 974–979. https://doi.org/10.1002/ejic.200701008

    Article  CAS  Google Scholar 

  71. Hong S-S, Lee MS, Park SS, Lee G-D (2003) Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catal Today 87:99–105

    Article  CAS  Google Scholar 

  72. Araña J et al. (2004) FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes. Appl Surf Sci 239:60–71

    Article  CAS  Google Scholar 

  73. Vasconcelos DCL et al. (2011) Infrared spectroscopy of titania sol–gel coatings on 316L stainless steel. Mater Sci Appl 2:1375–1382

    CAS  Google Scholar 

  74. Silverstein RM, Bassler GC, Morrill TC (1981) In: Spectrometric identification of organic compounds. John Wiley and Sons, Inc., New York, in press

  75. Caldeira L et al. (2012) Processing and characterization of sol–gel titania membranes. Ceram Int 38:3251–3260

    Article  CAS  Google Scholar 

  76. Kumar AM et al. (2014) Evaluation of chemically modified Ti-5Mo-3Fe alloy surface: electrochemical aspects and in vitro bioactivity on MG63 cells. Appl Surf Sci 307:52–61

    Article  CAS  Google Scholar 

  77. Vieira FTG et al. (2009) Thermogravimetric and UV–vis spectroscopic studies of chromium redox reactions in rutile pigments. J Therm Anal Calorim 97:99–103

    Article  CAS  Google Scholar 

  78. Khalid NR et al. (2013) Effects of calcination on structural, photocatalytic properties of TiO2 nanopowders via TiCl4 hydrolysis. J Mater Eng Perform 22:371–375

    Article  CAS  Google Scholar 

  79. Kosmulski M (2009) Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci 152:14–25

    Article  CAS  Google Scholar 

  80. Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264

    Article  CAS  Google Scholar 

  81. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  82. Cho CH, Kim DK, Kim DH (2003) Photocatalytic activity of monodispersed spherical TiO2 particles with different crystallization routes. J Am Ceram Soc 86:1138–45

    Article  CAS  Google Scholar 

  83. Serpone N, Emeline AV (2002) Suggested terms and definitions in photocatalysis and radiocatalysis. Int J Photoenergy 4:91–131

    Article  CAS  Google Scholar 

  84. Schneider J et al. (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  85. Wu H-S, Sun L-D, Zhou H-P, Yan C-H (2012) Novel TiO2–Pt@SiO2 nanocomposites with high photocatalytic activity. Nanoscale 4:3242

    Article  CAS  Google Scholar 

  86. Almeida RM, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68:4225–4232

    Article  CAS  Google Scholar 

  87. Permpoon S et al. (2008) Natural and persistent superhydrophilicity of SiO2/TiO2 and TiO2/SiO2 bi-layer films. Thin Solid Films 516:957–966

    Article  CAS  Google Scholar 

  88. Lenza RFS, Nunes EHM, Vasconcelos DCL, Vasconcelos WL (2015) Preparation of sol–gel silica samples modified with drying control chemical additives. J Non Cryst Solids 423–424:35–40

    Article  CAS  Google Scholar 

  89. Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM (2005) Vibrational spectroscopic studies of sol-gel derived physical and chemical bonded ORMOSILs. J Non Cryst Solids 351:372–379

    Article  CAS  Google Scholar 

  90. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  91. Gholami T, Bazarganipour M, Salavati-Niasari M, Bagheri S (2015) Photocatalytic degradation of methylene blue on TiO2@SiO2 core/shell nanoparticles: synthesis and characterization. J Mater Sci Mater Electron 26:6170–6177

    Article  CAS  Google Scholar 

  92. Resende SF, Gouveia RL, Oliveira BS, Vasconcelos WL (2017) Synthesis of TiO2/SiO2-B2O3 ternary nanocomposites: influence of interfacial properties on their photocatalytic activities with high resolution mass spectrometry monitoring. J Braz Chem Soc 28:1995–2003

    CAS  Google Scholar 

  93. Yang X, Gan C, Xiong H, Huang L, Luo X (2016) Fabrication and characterization of SiO2@TiO2@silicalite-1 catalyst and its application for degradation of rhodamine B. RSC Adv 6:105737–105743

    Article  CAS  Google Scholar 

  94. Hirano M, Ota K (2004) Direct formation and photocatalytic performance of anatase (TiO2)/silica (SiO2) composite nanoparticles. J Am Ceram Soc 87:1567–1570

    Article  CAS  Google Scholar 

  95. Hirano M, Ota K, Inagaki M, Iwata H (2004) Hydrothermal synthesis of TiO2/SiO2 composite nanoparticles and their photocatalytic performances. J Ceram Soc Jpn 112:143–148

    Article  CAS  Google Scholar 

  96. Kim YK, Kim EY, Whang CM, Kim YH, Lee WI (2005) Microstructure and photocatalytic property of SiO2–TiO2 under various process condition. J Sol-Gel Sci Technol 33:87–91

    Article  CAS  Google Scholar 

  97. Mazinani B et al. (2012) The effects of hydrothermal temperature on structural and photocatalytic properties of ordered large pore size TiO2-SiO2 mesostructured composite. J Alloy Compd 519:72–76

    Article  CAS  Google Scholar 

  98. Anderson C, Bard AJ (1995) An improved photocatalyst of TiO2/SiO2 prepared by a sol–gel synthesis. J Phys Chem 99:9882–9885

    Article  CAS  Google Scholar 

  99. Sirimahachai U, Ndiege N, Chandrasekharan R, Wongnawa S, Shannon MA (2010) Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2): synthesis and photocatalytic activities. J Sol-Gel Sci Technol 56:53–60

    Article  CAS  Google Scholar 

  100. Guo N et al. (2014) Uniform TiO2–SiO2 hollow nanospheres: synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol. Appl Surf Sci 305:562–574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FAPEMIG (APQ-00792-17, APQ-01881-18), CNPq (305013/2017-3, 301423/2018-0), and PRPq-UFMG (05/2016) are acknowledged for the financial supports. The authors kindly thank INCT-Acqua Institute, Prof. Paulo Brandão, Ilda Batista, and Isabel Batista for the help with FTIR and Nitrogen sorption characterizations. We also greatly thank Professors Adriana França and Leandro Soares from DEMEC-UFMG (Laboratório de Biocombustíveis) for the helpful discussions and support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Guimarães Palhares, Eduardo Henrique Martins Nunes or Manuel Houmard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palhares, H.G., Gonçalves, B.S., Silva, L.M.C. et al. Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO2-based nanocomposites with high photocatalytic performance. J Sol-Gel Sci Technol 95, 119–135 (2020). https://doi.org/10.1007/s10971-020-05265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05265-4

Keywords

Navigation