Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacteria as genetically programmable producers of bioactive natural products

Abstract

Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature’s abundance of natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacteria as living biofactories.
Fig. 2: Chemical space of natural products.
Fig. 3: Reprogramming bacteria and activating biosynthetic dark matter.
Fig. 4: Heterologous expression workflow.
Fig. 5: Mutasynthesis and mutagenesis.
Fig. 6: Biosynthetic pathway reorganization.
Fig. 7: Engineering de novo biosynthetic pathways.
Fig. 8: Directed evolution of biosynthetic pathways.

Similar content being viewed by others

References

  1. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Staley, J. T. Domain Cell Theory supports the independent evolution of the Eukarya, Bacteria and Archaea and the Nuclear Compartment Commonality hypothesis. Open Biol. 7, 170041 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schmidt, E. W. Trading molecules and tracking targets in symbiotic interactions. Nat. Chem. Biol. 4, 466–473 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoffmann, T. et al. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat. Commun. 9, 803 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Over, B. et al. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem. 5, 21–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. All natural. Nat. Chem. Biol. 3, 351 (2007).

    Article  Google Scholar 

  8. Sankaran, S., Zhao, S., Muth, C., Paez, J. & del Campo, A. Toward light-regulated living biomaterials. Adv. Sci. 5, 1800383 (2018).

    Article  CAS  Google Scholar 

  9. Bose, A., Gardel, E. J., Vidoudez, C., Parra, E. A. & Girguis, P. R. Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, 3391 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Shipman, S. L., Nivala, J., Macklis, J. D. & Church, G. M. CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature 547, 345–349 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, P. et al. PC, a novel oral insecticidal toxin from Bacillus bombysepticus involved in host lethality via APN and BtR-175. Sci. Rep. 5, 11101 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ruiu, L. et al. Pathogenicity and characterization of a novel Bacillus cereus sensu lato isolate toxic to the Mediterranean fruit fly Ceratitis capitata Wied. J. Invertebr. Pathol. 126, 71–77 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Mullins, A. J. et al. Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria. Nat. Microbiol. 4, 996–1005 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodrigues, A. et al. Variability of non-mutualistic filamentous fungi associated with Atta sexdens rubropilosa nests. Folia Microbiol. 50, 421 (2005).

    Article  CAS  Google Scholar 

  19. Rodrigues, A., Bacci, M. Jr, Mueller, U. G., Ortiz, A. & Pagnocca, F. C. Microfungal “weeds” in the leafcutter ant symbiosis. Microb. Ecol. 56, 604–614 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Moayyedi, P. et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59, 325–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Oh, D.-C., Poulsen, M., Currie, C. R. & Clardy, J. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat. Chem. Biol. 5, 391–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chevrette, M. G. et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat. Commun. 10, 516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tianero, M. D., Balaich, J. N. & Donia, M. S. Localized production of defence chemicals by intracellular symbionts of Haliclona sponges. Nat. Microbiol. 4, 1149–1159 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018). This review focuses on the challenges to connect the human microbiome to diseases and, finally, to enable more effective diagnosis, treatment and preventive modalities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Milshteyn, A., Colosimo, D. A. & Brady, S. F. Accessing bioactive natural products from the human microbiome. Cell Host Microbe 23, 725–736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donia, M. S. et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158, 1402–1414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hsieh, M.-C. et al. The beneficial effects of Lactobacillus reuteri ADR-1 or ADR-3 consumption on type 2 diabetes mellitus: a randomized, double-blinded, placebo-controlled trial. Sci. Rep. 8, 16791 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jang, S.-E., Jeong, J.-J., Kim, J.-K., Han, M. J. & Kim, D.-H. Simultaneous amelioratation of colitis and liver injury in mice by Bifidobacterium longum LC67 and Lactobacillus plantarum LC27. Sci. Rep. 8, 7500 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Alfaleh, K., Anabrees, J., Bassler, D. & Al-Kharfi, T. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 3, CD005496 (2011).

    Google Scholar 

  30. Johnsen, P. H. et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol. Hepatol. 3, 17–24 (2018).

    Article  PubMed  Google Scholar 

  31. Park, M., Tsai, S.-L. & Chen, W. Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13, 5777–5795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blakemore, R. Magnetotactic bacteria. Science 190, 377–379 (1975).

    Article  CAS  PubMed  Google Scholar 

  33. Vargas, G. et al. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23, 2438 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  34. Lower, B. H. & Bazylinski, D. A. The bacterial magnetosome: a unique prokaryotic organelle. J. Mol. Microbiol. Biotechnol. 23, 63–80 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anbu, P., Kang, C.-H., Shin, Y.-J. & So, J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 5, 250 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tanaka, M. et al. Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria. Appl. Environ. Microbiol. 82, 3886–3891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, Y. et al. Genetic improvement of Magnetospirillum gryphiswaldense for enhanced biological removal of phosphate. Biotechnol. Lett. 39, 1509–1514 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Smit, B. A. et al. Magnetotactic bacteria used to generate electricity based on Faraday’s law of electromagnetic induction. Lett. Appl. Microbiol. 66, 362–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Blondeau, M. et al. Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci. Rep. 8, 7699 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pierce, C. J. et al. Tuning bacterial hydrodynamics with magnetic fields. Phys. Rev. E 95, 62612 (2017).

    Article  CAS  Google Scholar 

  42. Kolinko, I. et al. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. Nat. Nanotechnol. 9, 193–197 (2014). The functional transfer of the bacterial magnetosome gene cluster originating from Magnetospirillum gryphiswaldense MSR-1 into a foreign non-MTB might set the stage for synthetic-biology approaches to be utilized for diverse nanotechnological and biomedical applications.

    Article  CAS  PubMed  Google Scholar 

  43. Frankel, R. B., Bazylinski, D. A., Johnson, M. S. & Taylor, B. L. Magneto-aerotaxis in marine coccoid bacteria. Biophys. J. 73, 994–1000 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bazylinski, D. A. et al. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 63, 801–808 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Malyshev, D. A. et al. A semi-synthetic organism with an expanded genetic alphabet. Nature 509, 385–388 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rovner, A. J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mandell, D. J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wegmann, U., Carvalho, A. L., Stocks, M. & Carding, S. R. Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci. Rep. 7, 2294 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gupta, P. L., Rajput, M., Oza, T., Trivedi, U. & Sanghvi, G. Eminence of microbial products in cosmetic industry. Nat. Prod. Bioprospect. 9, 267–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Becker, J., Rohles, C. M. & Wittmann, C. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab. Eng. 50, 122–141 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Becker, J., Zelder, O., Häfner, S., Schröder, H. & Wittmann, C. From zero to hero — design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab. Eng. 13, 159–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Li, Y. et al. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie van Leeuwenhoek 109, 1185–1197 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Yin, L. et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase l-isoleucine production in Corynebacterium glutamicum. Metab. Eng. 14, 542–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Li, T., Zhang, C., Yang, K.-L. & He, J. Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol. Sci. Adv. 4, e1701475 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Raveendran, S. et al. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 56, 16–30 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Souza, P. M. & de Oliveira Magalhães, P. Application of microbial α-amylase in industry – A review. Braz. J. Microbiol. 41, 850–861 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bowen, C. H. et al. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 19, 3853–3860 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Harvey, D., Bardelang, P., Goodacre, S. L., Cockayne, A. & Thomas, N. R. Antibiotic spider silk: site-specific functionalization of recombinant spider silk using “click” chemistry. Adv. Mater. 29, 1604245 (2017).

    Article  CAS  Google Scholar 

  60. Jafari, M. et al. Acidophilic bioleaching: a review on the process and effect of organic–inorganic reagents and materials on its efficiency. Min. Proc. Ext. Met. Rev. 40, 87–107 (2019).

    Article  CAS  Google Scholar 

  61. Litchfield, C. Thirty years and counting: bioremediation in its prime? BioScience 55, 273–279 (2005).

    Article  Google Scholar 

  62. Dixit, R. et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7, 2189–2212 (2015).

    Article  CAS  Google Scholar 

  63. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Hwang, H. G., Kim, M. S., Shin, S. M. & Hwang, C. W. Risk assessment of the schmutzdecke of biosand filters: identification of an opportunistic pathogen in schmutzdecke developed by an unsafe water source. Int. J. Environ. Res. Public Health 11, 2033–2048 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Payne, S. et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol. 9, 697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cao, Y. et al. Programmable assembly of pressure sensors using pattern-forming bacteria. Nat. Biotechnol. 35, 1087–1093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kylilis, N. et al. Whole-cell biosensor with tunable limit of detection enables low-cost agglutination assays for medical diagnostic applications. ACS Sens. 4, 370–378 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Nguyen, P. Q., Courchesne, N.-M. D., Duraj-Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Article  CAS  Google Scholar 

  70. Sawa, M. et al. Electricity generation from digitally printed cyanobacteria. Nat. Commun. 8, 1327 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P. & Likitlersuang, S. Evaluation of microencapsulation techniques for MICP bacterial spores applied in self-healing concrete. Sci. Rep. 9, 12484 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wang, W. et al. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Sci. Adv. 3, e1601984 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Williams, D. H., Stone, M. J., Hauck, P. R. & Rahman, S. K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod. 52, 1189–1208 (1989).

    Article  CAS  PubMed  Google Scholar 

  74. Schulz, S. & Dickschat, J. S. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24, 814–842 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Freeman, M. F., Vagstad, A. L. & Piel, J. Polytheonamide biosynthesis showcasing the metabolic potential of sponge-associated uncultivated ‘Entotheonella’ bacteria. Curr. Opin. Chem. Biol. 31, 8–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Reymond, J.-L. & Awale, M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem. Neurosci. 3, 649–657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rodrigues, T., Reker, D., Schneider, P. & Schneider, G. Counting on natural products for drug design. Nat. Chem. 8, 531–541 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Schneider, P. & Schneider, G. Privileged structures revisited. Angew. Chem. Int. Ed. 56, 7971–7974 (2017).

    Article  CAS  Google Scholar 

  80. Henkel, T., Brunne, R. M., Müller, H. & Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed. 38, 643–647 (1999).

    Article  CAS  Google Scholar 

  81. Herrmann, J., Fayad, A. A. & Müller, R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34, 135–160 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Genilloud, O. Actinomycetes: still a source of novel antibiotics. Nat. Prod. Rep. 34, 1203–1232 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Fujiwara, A., Hoshino, T. & Westley, J. W. Anthracycline antibiotics. Crit. Rev. Biotechnol. 3, 133–157 (1985).

    Article  Google Scholar 

  84. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Cytotoxic Antibiotics (National Institute of Diabetes and Digestive and Kidney Diseases, 2012).

  85. La Clair, J. J. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Nat. Prod. Rep. 27, 969–995 (2010).

    Article  PubMed  CAS  Google Scholar 

  86. Kling, A. et al. Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348, 1106–1112 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (2001).

    Article  Google Scholar 

  89. Benet, L. Z., Hosey, C. M., Ursu, O. & Oprea, T. I. BDDCS, the rule of 5 and drugability. Adv. Drug Deliv. Rev. 101, 89–98 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Koch, M. A. et al. Charting biologically relevant chemical space: a structural classification of natural products (SCONP). Proc. Natl Acad. Sci. USA 102, 17272–17277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Molnar, I. et al. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol. 7, 97–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Chen, H. & Du, L. Iterative polyketide biosynthesis by modular polyketide synthases in bacteria. Appl. Microbiol. Biotechnol. 100, 541–557 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Z., Pan, H.-X. & Tang, G.-L. New insights into bacterial type II polyketide biosynthesis. F1000Research 6, 172 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lim, Y. P., Go, M. K. & Yew, W. S. Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 21, 806 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  95. Dickschat, J. S. Bacterial terpene cyclases. Nat. Prod. Rep. 33, 87–110 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Ortega, M. A. & van der Donk, W. A. New insights into the biosynthetic logic of ribosomally synthesized and post-translationally modified peptide natural products. Cell Chem. Biol. 23, 31–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Inoue, M. et al. Total synthesis of the large non-ribosomal peptide polytheonamide B. Nat. Chem. 2, 280–285 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oman, T. J. & van der Donk, W. A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jordan, P. A. & Moore, B. S. Biosynthetic pathway connects cryptic ribosomally synthesized posttranslationally modified peptide genes with pyrroloquinoline alkaloids. Cell Chem. Biol. 23, 1504–1514 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ting, C. P. et al. Use of a scaffold peptide in the biosynthesis of amino acid–derived natural products. Science 365, 280–284 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fang, H., Kang, J. & Zhang, D. Microbial production of vitamin B12: a review and future perspectives. Microb. Cell Fact. 16, 15 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Scott, T. A. & Piel, J. The hidden enzymology of bacterial natural product biosynthesis. Nat. Rev. Chem. 3, 404–425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Rutledge, P. J. & Challis, G. L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 13, 509–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Onaka, H., Mori, Y., Igarashi, Y. & Furumai, T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 77, 400–406 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Moore, J. M., Bradshaw, E., Seipke, R. F., Hutchings, M. I. & McArthur, M. Use and discovery of chemical elicitors that stimulate biosynthetic gene clusters in Streptomyces bacteria. Methods Enzymol. 517, 367–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Seyedsayamdost, M. R. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc. Natl Acad. Sci. USA 111, 7266–7271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Locatelli, F. M., Goo, K.-S. & Ulanova, D. Effects of trace metal ions on secondary metabolism and the morphological development of streptomycetes. Metallomics 8, 469–480 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Hosaka, T. et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat. Biotechnol. 27, 462–464 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Tanaka, Y. et al. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J. Bacteriol. 195, 2959–2970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ochi, K. & Hosaka, T. New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters. Appl. Microbiol. Biotechnol. 97, 87–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Li, X., Wu, X., Zhu, J. & Shen, Y. Amexanthomycins A–J, pentangular polyphenols produced by Amycolatopsis mediterranei S699∆rifA. Appl. Microbiol. Biotechnol. 102, 689–702 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Rebets, Y., Brötz, E., Tokovenko, B. & Luzhetskyy, A. Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J. Ind. Microbiol. Biotechnol. 41, 387–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Rigali, S., Anderssen, S., Naômé, A. & van Wezel, G. P. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem. Pharmacol. 153, 24–34 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Panter, F., Krug, D., Baumann, S. & Müller, R. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem. Sci. 9, 4898–4908 (2018). In silico analysis for genes encoding a functional biosynthetic machinery co-localized with host self-resistance led to the discovery of a silent type II PKS BGC in Pyxidicoccus fallax An d48 and, after its activation, to the isolation of novel topoisomerase inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zerikly, M. & Challis, G. L. Strategies for the discovery of new natural products by genome mining. ChemBioChem 10, 625–632 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Laureti, L. et al. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc. Natl Acad. Sci. USA 108, 6258–6263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sidda, J. D. et al. Discovery of a family of γ-aminobutyrate ureas via rational derepression of a silent bacterial gene cluster. Chem. Sci. 5, 86–89 (2014).

    Article  CAS  Google Scholar 

  120. Wang, B., Guo, F., Dong, S.-H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15, 111–114 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Huo, L., Rachid, S., Stadler, M., Wenzel, S. C. & Müller, R. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol. 19, 1278–1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Seegers, C. L. C., Setroikromo, R. & Quax, W. J. in Natural Products and Cancer Drug Discovery (ed. Badria, F. A.) (InTech, 2017).

  123. Kung, S. H., Lund, S., Murarka, A., McPhee, D. & Paddon, C. J. Approaches and recent developments for the commercial production of semi-synthetic artemisinin. Front. Plant. Sci. 9, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Paddon, C. J. & Keasling, J. D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 12, 355–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Huo, L. et al. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep. 36, 1412–1436 (2019).

    Article  CAS  PubMed  Google Scholar 

  127. Wenzel, S. C. & Müller, R. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr. Opin. Biotechnol. 16, 594–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Horbal, L., Siegl, T. & Luzhetskyy, A. A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci. Rep. 8, 491 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Horbal, L. & Luzhetskyy, A. Dual control system–A novel scaffolding architecture of an inducible regulatory device for the precise regulation of gene expression. Metab. Eng. 37, 11–23 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Horbal, L., Fedorenko, V. & Luzhetskyy, A. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl. Microbiol. Biotechnol. 98, 8641–8655 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Sanchez-Garcia, L. et al. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb. Cell Fact. 15, 33 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Baeshen, N. A. et al. Cell factories for insulin production. Microb. Cell Fact. 13, 141 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Folkman, J. Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp. Cell Res. 312, 594–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Babaeipour, V., Khanchezar, S., Mofid, M. R. & Pesaran Hagi Abbas, M. Efficient process development of recombinant human granulocyte colony-stimulating factor (rh-GCSF) production in Escherichia coli. Iran. Biomed. J. 19, 102–110 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. Molineux, G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta®). Curr. Pharm. Des. 10, 1235–1244 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Turturro, F. Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of lymphoid-derived disorders. Expert Rev. Anticancer Ther. 7, 11–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Cai, X. et al. Entomopathogenic bacteria use multiple mechanisms for bioactive peptide library design. Nat. Chem. 9, 379–386 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Baltz, R. H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J. Ind. Microbiol. Biotechnol. 37, 759–772 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Pogorevc, D. et al. Biosynthesis and heterologous production of argyrins. ACS Synth. Biol. 8, 1121–1133 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Yan, F. et al. Biosynthesis and heterologous production of vioprolides: rational biosynthetic engineering and unprecedented 4-methylazetidinecarboxylic acid formation. Angew. Chem. Int. Ed. 57, 8754–8759 (2018).

    Article  CAS  Google Scholar 

  141. Videau, P., Wells, K. N., Singh, A. J., Gerwick, W. H. & Philmus, B. Assessment of Anabaena sp. strain PCC 7120 as a heterologous expression host for cyanobacterial natural products: production of lyngbyatoxin A. ACS Synth. Biol. 5, 978–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Shang, J.-L. et al. UV-B induced biosynthesis of a novel sunscreen compound in solar radiation and desiccation tolerant cyanobacteria. Environ. Microbiol. 20, 200–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Yang, G. et al. Photosynthetic production of sunscreen shinorine using an engineered cyanobacterium. ACS Synth. Biol. 7, 664–671 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Roulet, J. et al. Development of a cyanobacterial heterologous polyketide production platform. Metab. Eng. 49, 94–104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Agarwal, V. et al. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat. Chem. Biol. 13, 537–543 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, J. J., Tang, X. & Moore, B. S. Genetic platforms for heterologous expression of microbial natural products. Nat. Prod. Rep. 36, 1313–1332 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gemperlein, K., Zipf, G., Bernauer, H. S., Müller, R. & Wenzel, S. C. Metabolic engineering of Pseudomonas putida for production of docosahexaenoic acid based on a myxobacterial PUFA synthase. Metab. Eng. 33, 98–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Li, Y. et al. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis. Sci. Rep. 5, 9383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, Q. et al. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering. Sci. Rep. 6, 34623 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Borrero, J. et al. Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: purification, characterization, and heterologous production. Appl. Environ. Microbiol. 84, e01801-17 (2018).

    Article  PubMed  Google Scholar 

  151. Daba, G. M., Ishibashi, N., Zendo, T. & Sonomoto, K. Functional analysis of the biosynthetic gene cluster required for immunity and secretion of a novel Lactococcus-specific bacteriocin, lactococcin Z. J. Appl. Microbiol. 123, 1124–1132 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Bian, X. et al. Heterologous production and yield improvement of epothilones in Burkholderiales strain DSM 7029. ACS Chem. Biol. 12, 1805–1812 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, J. J., Moore, B. S. & Tang, X. Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters. Appl. Microbiol. Biotechnol. 102, 8437–8446 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sasse, F. et al. Argyrins, immunosuppressive cyclic peptides from myxobacteria. I. Production, isolation, physico-chemical and biological properties. J. Antibiot. 55, 543–551 (2002).

    Article  CAS  Google Scholar 

  155. Vollbrecht, L. et al. Argyrins, immunosuppressive cyclic peptides from myxobacteria. II. Structure elucidation and stereochemistry. J. Antibiot. 55, 715–721 (2002).

    Article  CAS  Google Scholar 

  156. Ferrari, P. et al. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. II. Structure elucidation. J. Antibiot. 49, 150–154 (1996).

    Article  CAS  Google Scholar 

  157. Selva, E. et al. Antibiotics A21459 A and B, new inhibitors of bacterial protein synthesis. I. Taxonomy, isolation and characterization. J. Antibiot. 49, 145–149 (1996).

    Article  CAS  Google Scholar 

  158. Gemperlein, K. et al. Polyunsaturated fatty acid production by Yarrowia lipolytica employing designed myxobacterial PUFA synthases. Nat. Commun. 10, 4055 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Lenihan-Geels, G., Bishop, K. S. & Ferguson, L. R. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5, 1301–1315 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Myronovskyi, M. et al. Generation of a cluster-free Streptomyces albus chassis strains for improved heterologous expression of secondary metabolite clusters. Metab. Eng. 49, 316–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, L., Ravichandran, V., Yin, Y., Yin, J. & Zhang, Y. Natural products from mammalian gut microbiota. Trends Biotechnol. 37, 492–504 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Dabard, J. et al. Ruminococcin A, a new lantibiotic produced by a Ruminococcus gnavus strain isolated from human feces. Appl. Environ. Microbiol. 67, 4111–4118 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hatziioanou, D. et al. Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. Microbiology 163, 1292–1305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dornisch, E. et al. Biosynthesis of the enterotoxic pyrrolobenzodiazepine natural product tilivalline. Angew. Chem. Int. Ed. 56, 14753–14757 (2017).

    Article  CAS  Google Scholar 

  165. Schneditz, G. et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl Acad. Sci. USA 111, 13181–13186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. von Tesmar, A. et al. Biosynthesis of the Klebsiella oxytoca pathogenicity factor tilivalline: heterologous expression, in vitro biosynthesis, and inhibitor development. ACS Chem. Biol. 13, 812–819 (2018).

    Article  CAS  Google Scholar 

  167. Hover, B. M. et al. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol. 3, 415–422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Smith, T. E. et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat. Chem. Biol. 14, 179–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nasrin, S. et al. Chloramphenicol derivatives with antibacterial activity identified by functional metagenomics. J. Nat. Prod. 81, 1321–1332 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. Hussain, M. S. et al. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci. 4, 10–20 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Azmir, J. et al. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 117, 426–436 (2013).

    Article  CAS  Google Scholar 

  172. Cravens, A., Payne, J. & Smolke, C. D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 10, 2142 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ochoa-Villarreal, M. et al. Plant cell culture strategies for the production of natural products. BMB Rep. 49, 149–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Smetanska, I. in Food Biotechnology. Advances in Biochemical Engineering/Biotechnology Vol. 111 (eds Stahl, U., Donalies, U. E. B. & Nevoigt, E.) 187–228 (Springer, 2008).

  175. Mustafa, N. R., de Winter, W., van Iren, F. & Verpoorte, R. Initiation, growth and cryopreservation of plant cell suspension cultures. Nat. Protoc. 6, 715–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Kotopka, B. J., Li, Y. & Smolke, C. D. Synthetic biology strategies toward heterologous phytochemical production. Nat. Prod. Rep. 35, 902–920 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  178. Nakagawa, A. et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7, 10390 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Galanie, S., Thodey, K., Trenchard, I. J., Filsinger Interrante, M. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015). The first microbial production of the selected opioid compounds thebaine and hydrocodone starting from central metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325–2327 (1971).

    Article  CAS  PubMed  Google Scholar 

  181. Suffness, M. Taxol: Science and Applications (CRC, 1995).

  182. Nicolaou, K. C. et al. Total synthesis of taxol. Nature 367, 630–634 (1994).

    Article  CAS  PubMed  Google Scholar 

  183. Holton, R. A. et al. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 116, 1597–1598 (1994).

    Article  CAS  Google Scholar 

  184. Doi, T. et al. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 1, 370–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Hirai, S., Utsugi, M., Iwamoto, M. & Nakada, M. Formal total synthesis of (−)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem. Eur. J. 21, 355–359 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Expósito, O. et al. Biotechnological production of taxol and related taxoids: current state and prospects. Anticancer Agents Med. Chem. 9, 109–121 (2008).

    Article  Google Scholar 

  187. Roberts, S. C. Production and engineering of terpenoids in plant cell culture. Nat. Chem. Biol. 3, 387–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Biggs, B. W. et al. Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl Acad. Sci. USA 113, 3209–3214 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chang, M. C. Y., Eachus, R. A., Trieu, W., Ro, D.-K. & Keasling, J. D. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3, 274–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Dietrich, J. A. et al. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3. ACS Chem. Biol. 4, 261–267 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Li, S., Li, Y. & Smolke, C. D. Strategies for microbial synthesis of high-value phytochemicals. Nat. Chem. 10, 395–404 (2018).

    Article  CAS  PubMed  Google Scholar 

  193. Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Jones, J. A. et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35, 55–63 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl Acad. Sci. USA 105, 7393–7398 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Menon, B. R. K. & Jenner, M. Biosynthesis: Reprogramming assembly lines. Nat. Chem. 10, 245–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  197. Williams, G. et al. in Developments in Biotechnology and Bioprocessing. ACS Symposium Series Vol. 1125 (eds Kantardjieff, A., Asuri, P., Coffman, J. L. & Jayapal, K.) 147–163 (American Chemical Society, 2013).

  198. Shier, W. T., Rinehart, K. L. & Gottlieb, D. Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc. Natl Acad. Sci. USA 63, 198–204 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Eichner, S., Floss, H. G., Sasse, F. & Kirschning, A. New, highly active nonbenzoquinone geldanamycin derivatives by using mutasynthesis. ChemBioChem 10, 1801–1805 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Knobloch, T. et al. Mutational biosynthesis of ansamitocin antibiotics: a diversity-oriented approach to exploit biosynthetic flexibility. ChemBioChem 12, 540–547 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Sahner, J. H. et al. Advanced mutasynthesis studies on the natural α-pyrone antibiotic myxopyronin from Myxococcus fulvus. ChemBioChem 16, 946–953 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Kries, H., Niquille, D. L. & Hilvert, D. A subdomain swap strategy for reengineering nonribosomal peptides. Chem. Biol. 22, 640–648 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Kim, E., Moore, B. S. & Yoon, Y. J. Reinvigorating natural product combinatorial biosynthesis with synthetic biology. Nat. Chem. Biol. 11, 649–659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. McDaniel, R., Ebert-Khosla, S., Hopwood, D. A. & Khosla, C. Engineered biosynthesis of novel polyketides. Science 262, 1546–1550 (1993).

    Article  CAS  PubMed  Google Scholar 

  205. McDaniel, R. et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc. Natl Acad. Sci. USA 96, 1846–1851 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Nguyen, K. T. et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc. Natl Acad. Sci. USA 103, 17462–17467 (2006). In this study, the authors established a robust combinatorial-biosynthesis platform to produce novel antibiotic peptides related to daptomycin at high yields.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Baltz, R. H. Combinatorial biosynthesis of cyclic lipopeptide antibiotics: A model for synthetic biology to accelerate the evolution of secondary metabolite biosynthetic pathways. ACS Synth. Biol. 3, 748–758 (2014).

    Article  CAS  PubMed  Google Scholar 

  208. Awakawa, T. et al. Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nat. Commun. 9, 3534 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Winn, M., Fyans, J. K., Zhuo, Y. & Micklefield, J. Recent advances in engineering nonribosomal peptide assembly lines. Nat. Prod. Rep. 33, 317–347 (2016).

    Article  CAS  PubMed  Google Scholar 

  210. Kries, H. Biosynthetic engineering of nonribosomal peptide synthetases. J. Pept. Sci. 22, 564–570 (2016).

    Article  CAS  PubMed  Google Scholar 

  211. Bozhüyük, K. A. J. et al. De novo design and engineering of non-ribosomal peptide synthetases. Nat. Chem. 10, 275–281 (2018). De novo design of NRPSs via a new strategy using defined exchange units and not modules as functional units.

    Article  PubMed  CAS  Google Scholar 

  212. Zhang, J. et al. Structural basis of nonribosomal peptide macrocyclization in fungi. Nat. Chem. Biol. 12, 1001–1003 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Gao, X. et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat. Chem. Biol. 8, 823–830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bozhüyük, K. A. J. et al. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat. Chem. 11, 653–661 (2019). The XUC concept enables the production of peptide libraries, functionalized xenotetrapeptides and the incorporation of non-natural amino acids via de novo design of NRPSs.

    Article  PubMed  CAS  Google Scholar 

  215. Medema, M. H., Cimermancic, P., Sali, A., Takano, E. & Fischbach, M. A. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput. Biol. 10, e1004016 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Chemler, J. A. et al. Evolution of efficient modular polyketide synthases by homologous recombination. J. Am. Chem. Soc. 137, 10603–10609 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Zeymer, C. & Hilvert, D. Directed evolution of protein catalysts. Annu. Rev. Biochem. 87, 131–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science 354, 1048–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lutz, S. Beyond directed evolution — semi-rational protein engineering and design. Curr. Opin. Biotechnol. 21, 734–743 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Niquille, D. L. et al. Nonribosomal biosynthesis of backbone-modified peptides. Nat. Chem. 10, 282–287 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Otten, L. G., Schaffer, M. L., Villiers, B. R. M., Stachelhaus, T. & Hollfelder, F. An optimized ATP/PPi-exchange assay in 96-well format for screening of adenylation domains for applications in combinatorial biosynthesis. Biotechnol. J. 2, 232–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  222. Zhang, K. et al. Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display. Chem. Biol. 20, 92–101 (2013).

    Article  CAS  PubMed  Google Scholar 

  223. Villiers, B. & Hollfelder, F. Directed evolution of a gatekeeper domain in nonribosomal peptide synthesis. Chem. Biol. 18, 1290–1299 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Kendrew, S. G. et al. Recombinant strains for the enhanced production of bioengineered rapalogs. Metab. Eng. 15, 167–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017). The production of different rapalogues was accomplished via an accelerated-evolution method of modular PKS genes mimicking a plausible mechanism of natural evolution.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. Three-dimensional electron crystallography of protein microcrystals. elife 2, e01345 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Jones, C. G. et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Helfrich, E. J. N. et al. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat. Chem. Biol. 15, 813–821 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge B. Schnell, D. Pogorevc and J. Dastbaz for their helpful comments on this manuscript. Research in R.M.’s laboratory is funded by the Deutsche Forschungsgemeinschaft (DFG), the Bundesministerium für Bildung und Forschung (BMBF) and the Deutsches Zentrum für Infektionsforschung Standort Hannover-Braunschweig. Joachim J. Hug acknowledges funding by a PhD fellowship of the Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Contributions

J.J.H., D.K. and R.M. wrote, edited and reviewed the manuscript. All authors contributed to the discussion of the content.

Corresponding author

Correspondence to Rolf Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Promoter

Genetic region that initiates the transcription of a particular gene by binding RNA polymerase and transcription factors. Constitutive promoters are always active, while inducible promoters are regulated through molecules, temperature and light.

Isostere

Isosteres are molecules or ions with similar chemical scaffold. This means the same number and arrangement of atoms and comparable electronic properties.

Heterologous expression

The production of non-native biomolecules through the transfer of biosynthetic genes into a foreign host.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hug, J.J., Krug, D. & Müller, R. Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 4, 172–193 (2020). https://doi.org/10.1038/s41570-020-0176-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-020-0176-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing