Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unscheduled MRE11 activity triggers cell death but not chromosome instability in polymerase eta-depleted cells subjected to UV irradiation

A Correction to this article was published on 12 October 2023

This article has been updated

Abstract

The elimination of DNA polymerase eta (pol η) causes discontinuous DNA elongation and fork stalling in UV-irradiated cells. Such alterations in DNA replication are followed by S-phase arrest, DNA double-strand break (DSB) accumulation, and cell death. However, their molecular triggers and the relative timing of these events have not been fully elucidated. Here, we report that DSBs accumulate relatively early after UV irradiation in pol η-depleted cells. Despite the availability of repair pathways, DSBs persist and chromosome instability (CIN) is not detectable. Later on cells with pan-nuclear γH2AX and massive exposure of template single-stranded DNA (ssDNA), which indicate severe replication stress, accumulate and such events are followed by cell death. Reinforcing the causal link between the accumulation of pan-nuclear ssDNA/γH2AX signals and cell death, downregulation of RPA increased both replication stress and the cell death of pol η-deficient cells. Remarkably, DSBs, pan-nuclear ssDNA/γH2AX, S-phase arrest, and cell death are all attenuated by MRE11 nuclease knockdown. Such results suggest that unscheduled MRE11-dependent activities at replicating DNA selectively trigger cell death, but not CIN. Together these results show that pol η-depletion promotes a type of cell death that may be attractive as a therapeutic tool because of the lack of CIN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pol η depletion causes CIN-independent cell death.
Fig. 2: Pol η depletion causes cell cycle arrest and augments DSB accumulation independently from FANCD2-mediated repair.
Fig. 3: DSBs accumulation precedes acute replication stress in pol η-depleted cells.
Fig. 4: RPA down-modulation augments pan-nuclear single-stranded DNA (ssDNA) accumulation, and cell death in UV-irradiated pol η-depleted cells.
Fig. 5: MRE11 depletion prevents DSBs and pan-nuclear ssDNA accumulation in UV-irradiated pol η-depleted cells.
Fig. 6: MRE11 depletion alleviates the S-phase arrest and cell death, but increases the G2/M arrest of UV-irradiated pol η-depleted cells.
Fig. 7: The role of unscheduled MRE1-mediated replication transactions in the cell death of pol η-depleted samples.

Similar content being viewed by others

Change history

References

  1. Spivak G. Nucleotide excision repair in humans. DNA Repair. 2015;36:13–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cruet-Hennequart S, Gallagher K, Sokol AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Sub-Cell Biochem. 2010;50:189–209.

    Article  CAS  Google Scholar 

  3. Kannouche P, Stary A. Xeroderma pigmentosum variant and error-prone DNA polymerases. Biochimie. 2003;85:1123–32.

    Article  CAS  PubMed  Google Scholar 

  4. Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M, Yuasa M, et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature. 1999;399:700–4.

    Article  CAS  PubMed  Google Scholar 

  5. Masutani C, Araki M, Yamada A, Kusumoto R, Nogimori T, Maekawa T, et al. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 1999;18:3491–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eveno E, Bourre F, Quilliet X, Chevallier-Lagente O, Roza L, Eker AP, et al. Different removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases. Cancer Res. 1995;55:4325–32.

    CAS  PubMed  Google Scholar 

  7. Lerner LK, Francisco G, Soltys DT, Rocha CR, Quinet A, Vessoni AT, et al. Predominant role of DNA polymerase eta and p53-dependent translesion synthesis in the survival of ultraviolet-irradiated human cells. Nucleic Acids Res. 2017;45:1270–80.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, Gao Y, Zlatanou A, Tateishi S, Yurchenko V, Rogozin IB, et al. Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis. Cell Cycle. 2018;17:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gueranger Q, Stary A, Aoufouchi S, Faili A, Sarasin A, Reynaud CA, et al. Role of DNA polymerases eta, iota and zeta in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair. 2008;7:1551–62.

    Article  CAS  PubMed  Google Scholar 

  10. Jansen JG, Temviriyanukul P, Wit N, Delbos F, Reynaud CA, Jacobs H, et al. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light. Nucleic Acids Res. 2014;42:11071–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ziv O, Geacintov N, Nakajima S, Yasui A, Livneh Z. DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc Natl Acad Sci USA. 2009;106:11552–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertolin AP, Mansilla SF, Gottifredi V. The identification of translesion DNA synthesis regulators: inhibitors in the spotlight. DNA repair. 2015;32:158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoon JH, McArthur MJ, Park J, Basu D, Wakamiya M, Prakash L, et al. Error-prone replication through UV Lesions by DNA polymerase theta protects against skin cancers. Cell. 2019;176:1295–309. e1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z. Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta. DNA Repair. 2008;7:1636–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elvers I, Johansson F, Groth P, Erixon K, Helleday T. UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res. 2011;39:7049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Despras E, Sittewelle M, Pouvelle C, Delrieu N, Cordonnier AM, Kannouche PL. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat Commun. 2016;7:13326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quinet A, Vessoni AT, Rocha CR, Gottifredi V, Biard D, Sarasin A, et al. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome. DNA Repair. 2014;14:27–38.

    Article  CAS  PubMed  Google Scholar 

  18. Quinet A, Martins DJ, Vessoni AT, Biard D, Sarasin A, Stary A, et al. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Res. 2016;44:5717–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vallerga MB, Mansilla SF, Federico MB, Bertolin AP, Gottifredi V. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. Proc Natl Acad Sci USA. 2015;112:E6624–6633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cruet-Hennequart S, Coyne S, Glynn MT, Oakley GG, Carty MP, UV-induced RPA. phosphorylation is increased in the absence of DNA polymerase eta and requires DNA-PK. DNA Repair. 2006;5:491–504.

    Article  CAS  PubMed  Google Scholar 

  21. Despras E, Daboussi F, Hyrien O, Marheineke K, Kannouche PL. ATR/Chk1 pathway is essential for resumption of DNA synthesis and cell survival in UV-irradiated XP variant cells. Hum Mol Genet. 2010;19:1690–701.

    Article  CAS  PubMed  Google Scholar 

  22. Stary A, Kannouche P, Lehmann AR, Sarasin A. Role of DNA polymerase eta in the UV mutation spectrum in human cells. J Biol Chem. 2003;278:18767–75.

    Article  CAS  PubMed  Google Scholar 

  23. Chen YW, Cleaver JE, Hanaoka F, Chang CF, Chou KM. A novel role of DNA polymerase eta in modulating cellular sensitivity to chemotherapeutic agents. Mol Cancer Res: MCR. 2006;4:257–65.

    Article  CAS  PubMed  Google Scholar 

  24. Albertella MR, Green CM, Lehmann AR, O’Connor MJ. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res. 2005;65:9799–806.

    Article  CAS  PubMed  Google Scholar 

  25. Alt A, Lammens K, Chiocchini C, Lammens A, Pieck JC, Kuch D, et al. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science. 2007;318:967–70.

    Article  CAS  PubMed  Google Scholar 

  26. Ummat A, Rechkoblit O, Jain R, Roy Choudhury J, Johnson RE, Silverstein TD, et al. Structural basis for cisplatin DNA damage tolerance by human polymerase eta during cancer chemotherapy. Nat Struct Mol Biol. 2012;19:628–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao Y, Biertumpfel C, Gregory MT, Hua YJ, Hanaoka F, Yang W. Structural basis of human DNA polymerase eta-mediated chemoresistance to cisplatin. Proc Natl Acad Sci USA. 2012;109:7269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deniz M, Holzmann K, Wiesmuller L. Functional analysis-make or break for cancer predictability. Mutat Res. 2013;743-4:132–41.

    Article  Google Scholar 

  29. Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev genomics Hum Genet. 2009;10:451–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR. Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev. 2001;15:158–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Federico MB, Vallerga MB, Radl A, Paviolo NS, Bocco JL, Di Giorgio M, et al. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks. PLoS Genet. 2016;12:e1005792.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murfuni I, Basile G, Subramanyam S, Malacaria E, Bignami M, Spies M, et al. Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function. PLoS Genet. 2013;9:e1003910.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez Besteiro MA, Calzetta NL, Loureiro SM, Habif M, Betous R, Pillaire MJ, et al. Chk1 loss creates replication barriers that compromise cell survival independently of excess origin firing. EMBO J. 2019;38:e101284.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bryant PE. Repair and chromosomal damage. Radiother Oncol. 2004;72:251–6.

    Article  CAS  PubMed  Google Scholar 

  35. Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, Herrador R, et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol. 2015;208:563–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37:492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011;145:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mah LJ, El-Osta A, Karagiannis TC. gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia. 2010;24:679–86.

    Article  CAS  PubMed  Google Scholar 

  39. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol cell Biol. 2014;15:7–18.

    Article  CAS  PubMed  Google Scholar 

  40. Limoli CL, Giedzinski E, Bonner WM, Cleaver JE. UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma -H2AX formation, and Mre11 relocalization. Proc Natl Acad Sci USA. 2002;99:233–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ochs F, Somyajit K, Altmeyer M, Rask MB, Lukas J, Lukas C. 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol. 2016;23:714–21.

    Article  CAS  PubMed  Google Scholar 

  42. Buisson R, Boisvert JL, Benes CH, Zou L. Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase. Mol cell. 2015;59:1011–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toledo LI, Altmeyer M, Rask MB, Lukas C, Larsen DH, Povlsen LK, et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell. 2013;155:1088–103.

    Article  CAS  PubMed  Google Scholar 

  44. Syed A, Tainer JA. The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 2018;87:263–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hampp S, Kiessling T, Buechle K, Mansilla SF, Thomale J, Rall M, et al. DNA damage tolerance pathway involving DNA polymerase iota and the tumor suppressor p53 regulates DNA replication fork progression. Proc Natl Acad Sci USA. 2016;113:E4311–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hashimoto Y, Puddu F, Costanzo V. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat Struct Mol Biol. 2011;19:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lemacon D, Jackson J, Quinet A, Brickner JR, Li S, Yazinski S, et al. MRE11 and EXO1 nucleases degrade reversed forks and elicit MUS81-dependent fork rescue in BRCA2-deficient cells. Nat Commun. 2017;8:1–12.

    Article  CAS  Google Scholar 

  48. Schlacher K, Wu H, Jasin M. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell. 2012;22:106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paull TT. 20 years of Mre11 biology: no end in sight. Mol Cell. 2018;71:419–27.

    Article  CAS  PubMed  Google Scholar 

  50. Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S, Blanco L, et al. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat Struct Mol Biol. 2013;20:1383–9.

    Article  CAS  PubMed  Google Scholar 

  51. McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell. 2005;20:783–92.

    Article  CAS  PubMed  Google Scholar 

  52. Pellegrino S, Michelena J, Teloni F, Imhof R, Altmeyer M. Replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin. Cell Rep. 2017;19:1819–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gursoy-Yuzugullu O, House N, Price BD. Patching broken DNA: nucleosome dynamics and the repair of DNA breaks. J Mol Biol. 2016;428:1846–60.

    Article  CAS  PubMed  Google Scholar 

  54. Jeggo PA, Downs JA. Roles of chromatin remodellers in DNA double strand break repair. Exp Cell Res. 2014;329:69–77.

    Article  CAS  PubMed  Google Scholar 

  55. Limoli CL, Giedzinski E, Morgan WF, Cleaver JE. Polymerase eta deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair. Proc Natl Acad Sci USA. 2000;97:7939–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cleaver JE, Afzal V, Feeney L, McDowell M, Sadinski W, Volpe JP, et al. Increased ultraviolet sensitivity and chromosomal instability related to P53 function in the xeroderma pigmentosum variant. Cancer Res. 1999;59:1102–8.

    CAS  PubMed  Google Scholar 

  57. Roerink SF, van Schendel R, Tijsterman M. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. Genome Res. 2014;24:954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol. 2018;15:564–76.

    Article  CAS  PubMed  Google Scholar 

  59. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  60. Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol. 2011;5:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434:913–7.

    Article  CAS  PubMed  Google Scholar 

  62. Paviolo NS, dela Vega MB, Pansa MF, Garcia IA, Calzetta NL, Soria G, et al. Persistent double strand break accumulation does not precede cell death in an Olaparib-sensitive BRCA-deficient colorectal cancer cell model. Genet Mol Biol. 2020;43:1.

    Article  Google Scholar 

  63. Barnes RP, Tsao WC, Moldovan GL, Eckert KA. DNA polymerase Eta prevents tumor cell-cycle arrest and cell death during recovery from replication stress. Cancer Res. 2018;78:6549–60.

    Article  CAS  PubMed  Google Scholar 

  64. Eckert KA, Barnes RP. DNA polymerases as chemotherapy targets: promise and challenges. Oncotarget. 2019;10:620–1.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Villafanez F, Garcia IA, Carbajosa S, Pansa MF, Mansilla S, Llorens MC, et al. AKT inhibition impairs PCNA ubiquitylation and triggers synthetic lethality in homologous recombination-deficient cells submitted to replication stress. Oncogene. 2019;38:4310–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science. 1998;282:1497–501.

    Article  CAS  PubMed  Google Scholar 

  67. Ireno IC, Wiehe RS, Stahl AI, Hampp S, Aydin S, Troester MA, et al. Modulation of the poly (ADP-ribose) polymerase inhibitor response and DNA recombination in breast cancer cells by drugs affecting endogenous wild-type p53. Carcinogenesis. 2014;35:2273–82.

    Article  CAS  PubMed  Google Scholar 

  68. Ceppi P, Novello S, Cambieri A, Longo M, Monica V, Lo Iacono M, et al. Polymerase eta mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res. 2009;15:1039–45.

    Article  CAS  PubMed  Google Scholar 

  69. Teng KY, Qiu MZ, Li ZH, Luo HY, Zeng ZL, Luo RZ, et al. DNA polymerase eta protein expression predicts treatment response and survival of metastatic gastric adenocarcinoma patients treated with oxaliplatin-based chemotherapy. J Transl Med. 2010;8:1–9.

    Article  Google Scholar 

  70. Xu X, Xie K, Zhang XQ, Pridgen EM, Park GY, Cui DS, et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc Natl Acad Sci USA. 2013;110:18638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Professors AR Lehmann (University of Sussex), for the gift of XPV cells. We also thank Carlos Menck at the University of Sao Paolo and all the members of the Gottifredi laboratory for fruitful discussions. The excellent support of Andres H. Rossi and Anabel Alvaréz Julia in the microscopy and tissue cultures facilities is acknowledged. This work was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) grant number PICT 2015-1217, Instituto Nacional del Cancer (INC)—“Asistencia Financiera a proyectos de investigación de cáncer de origen nacional III to VG and the German Cancer Aid, Priority Program “Translational Oncology” 70112504 and by the Deutsche Forschungsgemeinschaft (DFG, Research Training Group 2544) to LW. MBF, SOS, NLC, NSP, JM, and MBdlV were supported by fellowships from CONICET and ANPCyT. VG is a researcher from CONICET and was supported by the Friedrich Wilhelm Bessel from Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

VG conceived the study; MBF and VG designed the experiments; MBF, SOS, NLC, NSP, MBdlV, JM, and MCC performed experiments; MBF, SOS, NLC, JM, and VG interpreted the data; MBF and SOS designed and generated the figures with the help of LW and VG; VG wrote the paper and all authors edited it; LW and VG supervised the project.

Corresponding author

Correspondence to Vanesa Gottifredi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federico, M.B., Siri, S.O., Calzetta, N.L. et al. Unscheduled MRE11 activity triggers cell death but not chromosome instability in polymerase eta-depleted cells subjected to UV irradiation. Oncogene 39, 3952–3964 (2020). https://doi.org/10.1038/s41388-020-1265-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1265-9

This article is cited by

Search

Quick links