Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Climatic-niche evolution follows similar rules in plants and animals

Subjects

Abstract

Climatic niches are essential in determining where species can occur and how they will respond to climate change. However, it remains unclear if climatic-niche evolution is similar in plants and animals or is intrinsically different. For example, previous authors have proposed that plants have broader environmental tolerances than animals but are more sensitive to climate change. Here, we test ten predictions about climatic-niche evolution in plants and animals, using phylogenetic and climatic data for 19 plant clades and 17 vertebrate clades (2,087 species total). Surprisingly, we find that for all ten predictions, plants and animals show similar patterns. For example, in both groups, climatic niches change at similar mean rates and species have similar mean niche breadths, and niche breadths show similar relationships with latitude across groups. Our results suggest that there are general ‘rules’ of climatic-niche evolution that span plants and animals, despite the fundamental differences in their biology. These results may help to explain why plants and animals have similar responses to climate change and why they often have shared species richness patterns, biogeographic regions, biomes and biodiversity hotspots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Support for ten hypotheses about climatic-niche evolution among 19 plant clades and 17 animal clades.
Fig. 2: Rates of climatic-niche evolution in plants and animals (H1).
Fig. 3: Relationships between rates of climatic-niche evolution and species age (H2).
Fig. 4: Comparison of evolutionary rates for maximum and minimum annual temperatures (H4) and wettest- and driest-quarter precipitation (H5).
Fig. 5: Relationships between niche breadths and absolute latitude of each species (H7).
Fig. 6: Relationships between mean within-locality and species-level niche breadths (H8), between temperature and precipitation niche breadths (H9) and between niche breadths and niche position (H10).

Similar content being viewed by others

Data availability

Supplementary Datasets 1–12 are available on Dryad (https://doi.org/10.5061/dryad.wh70rxwjm).

Code availability

All the R codes used in this study are available in Supplementary Dataset 11 on Dryad (https://doi.org/10.5061/dryad.wh70rxwjm).

References

  1. Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

    Article  PubMed  Google Scholar 

  2. Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rangel, T. F. L. V. B., Diniz-Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am. Nat. 170, 602–616 (2007).

    Article  PubMed  Google Scholar 

  4. Smith, B. T., Bryson, R. W., Houston, D. D. & Klicka, J. An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol. Lett. 15, 1318–1325 (2012).

    Article  PubMed  Google Scholar 

  5. Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. B 279, 194–201 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hua, X. & Wiens, J. J. How does climate influence speciation? Am. Nat. 182, 1–12 (2013).

    Article  PubMed  Google Scholar 

  7. Jezkova, T. & Wiens, J. J. Testing the role of climate in speciation: new methods and applications to squamate reptiles (lizards and snakes). Mol. Ecol. 27, 2754–2769 (2018).

    Article  PubMed  Google Scholar 

  8. Cooney, C. R., Seddon, N. & Tobias, J. A. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869–878 (2016).

    Article  PubMed  Google Scholar 

  9. Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Atwater, D. Z., Ervine, C. & Barney, J. N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34–43 (2018).

    Article  PubMed  Google Scholar 

  11. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. R. Soc. B 278, 2384–2391 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fisher-Reid, M. C., Kozak, K. H. & Wiens, J. J. How is the rate of climatic-niche evolution related to climatic-niche breadth? Evolution 66, 3836–3851 (2012).

    Article  PubMed  Google Scholar 

  15. Quintero, I. & Wiens, J. J. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Glob. Ecol. Biogeogr. 22, 422–432 (2013).

    Article  Google Scholar 

  16. Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).

    Article  PubMed  Google Scholar 

  17. Smith, S. A. & Beaulieu, J. M. Life history influences rates of climatic niche evolution in flowering plants. Proc. R. Soc. B 276, 4345–4352 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. B 283, 20162104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bradshaw, A. D. Some of the evolutionary consequences of being a plant. Evol. Biol. 5, 25–47 (1972).

    Google Scholar 

  20. Huey, R. B. et al. Plants versus animals: do they deal with stress in different ways? Integr. Comp. Biol. 42, 415–423 (2002).

    Article  PubMed  Google Scholar 

  21. Davies, T. J. & Savolainen, V. Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60, 476–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Scholl, J. P. & Wiens, J. J. Diversification rates and species richness across the Tree of Life. Proc. R. Soc. B 283, 20161334 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Vázquez, D. P. & Stevens, R. D. The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat. 164, E1–E19 (2004).

    Article  PubMed  Google Scholar 

  25. Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    Article  PubMed  Google Scholar 

  26. Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. 196, 681–694 (2012).

    Article  PubMed  Google Scholar 

  27. Cang, F. A., Wilson, A. A. & Wiens, J. J. Climate change is projected to outpace rates of niche change in grasses. Biol. Lett. 12, 20160368 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hunt, G. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38, 351–373 (2012).

    Article  Google Scholar 

  29. Lawson, A. M. & Weir, J. T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 17, 1427–1436 (2014).

    Article  PubMed  Google Scholar 

  30. Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  PubMed  Google Scholar 

  31. Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  32. Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. R. Soc. B 281, 20133229 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hua, X. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen’s hypothesis. Proc. R. Soc. B 283, 20160349 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).

    Article  Google Scholar 

  35. Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B 267, 739–745 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).

    Article  PubMed  Google Scholar 

  37. Brown, J. H. & Lomolino, M. V. Biogeography (Sinauer Associates, 1998).

  38. Loehle, C. Height growth rate tradeoffs determine northern and southern range limits for trees. J. Biogeogr. 25, 735–742 (1998).

    Article  Google Scholar 

  39. Qian, H. Relationships between plant and animal species richness at a regional scale in China. Conserv. Biol. 21, 937–944 (2007).

    Article  PubMed  Google Scholar 

  40. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jetz, W., Kreft, H., Ceballos, G. & Mutke, J. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276, 269–278 (2009).

    Article  PubMed  Google Scholar 

  42. The Angiosperm Phylogeny Group et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    Article  Google Scholar 

  43. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  44. Hijmans, R. J. et al. Raster package in R, version 2.8–19 (2015).

  45. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  46. Castellanos-Morales, G. et al. Historical biogeography and phylogeny of Cucurbita: insights from ancestral area reconstruction and niche evolution. Mol. Phylogenet. Evol. 128, 38–54 (2018).

    Article  PubMed  Google Scholar 

  47. Pirie, M. D., Maas, P. J. M., Wilschut, R. A., Melchers-Sharrott, H. & Chatrou, L. W. Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America. R. Soc. Open Sci. 5, 171561 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Orme, D. & Freckleton, R. The caper package: comparative analysis of phylogenetics and evolution in R. Version 1.0.1 (2018).

  51. Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

    Article  PubMed  Google Scholar 

  52. Fiz-Palacios, O., Schneider, H., Heinrichs, J. & Savolainen, V. Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol. Biol. 11, 341 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).

    Article  PubMed  Google Scholar 

  54. Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article  Google Scholar 

  55. Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).

    Article  PubMed  Google Scholar 

  57. Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ghasemi, A. & Zahediasl, S. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 486–489 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Adams, D. C. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Syst. Biol. 62, 181–192 (2013).

    Article  PubMed  Google Scholar 

  60. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  61. Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018).

    Article  PubMed  Google Scholar 

  62. Zhang, Z. Animal biodiversity: an update of classification and diversity in 2013. Zootaxa 3703, 5–11 (2013).

    Article  Google Scholar 

  63. Niklas, K. Plant Evolution: An Introduction to the History of Life (Univ. of Chicago Press, 2016).

  64. Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article  PubMed  Google Scholar 

  65. Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the many authors who provided us with their trees and locality data. H.L. acknowledges financial support from National Natural Science Foundation of China grant no. 31670411, Youth Innovation Promotion Association of the Chinese Academy of Sciences grant no. 2019339 and State Scholarship Fund of China Scholarship Council grant no. 201804910141. J.J.W. was supported by US National Science Foundation grant no. DEB 1655690.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and J.J.W. designed the study and wrote the paper. H.L. performed analyses. All authors contributed to revisions.

Corresponding author

Correspondence to John J. Wiens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Appendices 1 and 2, Tables 1–13 and Figs. 1–6.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Ye, Q. & Wiens, J.J. Climatic-niche evolution follows similar rules in plants and animals. Nat Ecol Evol 4, 753–763 (2020). https://doi.org/10.1038/s41559-020-1158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1158-x

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene