Skip to main content
Log in

Out-of-roundness compensation technique in machining of femoral head prosthesis using conventional CNC machine

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In manufacturing of femoral head prostheses, the roundness of the femoral head is important. In order to reduce out-of-roundness when machining with a conventional CNC machine, a compensation technique with a fast tool servo was developed. The fast tool servo with piezoelectric actuator was fabricated and installed on a conventional CNC machine, and a compensation technique was implemented to compensate for the out-of-roundness. The profiles of machined femoral heads were analyzed and used to develop a representative profile. The experiment was conducted to confirm the prior statistical analysis. The results show that the compensation technique reduced the out-of-roundness of femoral head prostheses to 4.04 ± 0.54 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ASTM (2005) F2033 standard specification for total hip prosthesis and hip endoprosthesis bearing surfaces made of metallic, ceramic, and polymeric materials. Astm. https://doi.org/10.1520/F2033-05.2

  2. Woronko A, Huang J, Altintas Y (2003) Piezoelectric tool actuator for precision machining on conventional CNC turning centers. Precis Eng 27(4):335–345. https://doi.org/10.1016/S0141-6359(03)00040-0

    Article  Google Scholar 

  3. Xu W, Cui D, Wu Y (2016) Sphere forming mechanisms in vibration-assisted ball centreless grinding. Int J Mach Tools Manuf 108:83–94. https://doi.org/10.1016/j.ijmachtools.2016.06.004

    Article  Google Scholar 

  4. Yin ZQ, Dai YF, Li SY, Guan CL, Tie GP (2011) Fabrication of off-axis aspheric surfaces using a slow tool servo. Int J Mach Tools Manuf 51(5):404–410. https://doi.org/10.1016/j.ijmachtools.2011.01.008

    Article  Google Scholar 

  5. Abellán-Nebot JV, Siller HR, Vila C, Rodríguez CA (2012) An experimental study of process variables in turning operations of Ti-6Al-4V and Cr-Co spherical prostheses. Int J Adv Manuf Technol 63:887–902. https://doi.org/10.1007/s00170-012-3955-0

    Article  Google Scholar 

  6. Rosenberg O, Vozny V, Sokhan C, Gawlik J, Mamalis AG, Kim DJ (2006) Trends and developments in the manufacturing of hip joints: an overview. Int J Adv Manuf Technol 27(5–6):537–542. https://doi.org/10.1007/s00170-004-2189-1

    Article  Google Scholar 

  7. Zhu WH, Jun MB, Altintas Y (2001) A fast tool servo design for precision turning of shafts on conventional CNC lathes. Int J Mach Tools Manuf 41(7):953–965. https://doi.org/10.1016/S0890-6955(00)00118-8

    Article  Google Scholar 

  8. Turek P, Jędrzejewski J, Modrzycki W, Engineering M (2010) Methods of machine tool error compensation. J Mach Eng 10(4):5–25. https://doi.org/10.1016/j.procir.2013.06.078

    Article  Google Scholar 

  9. Yu DP, Hong GS, Wong YS (2012) Profile error compensation in fast tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf 52(1):13–23. https://doi.org/10.1016/j.ijmachtools.2011.08.010

    Article  Google Scholar 

  10. Gao W, Tano M, Araki T, Kiyono S, Park CH (2007) Measurement and compensation of error motions of a diamond turning machine. Precis Eng 31(3):310–316. https://doi.org/10.1016/j.precisioneng.2006.06.003

    Article  Google Scholar 

  11. Ma H, Tian J, Hu D (2013) Development of a fast tool servo in noncircular turning and its control. Mech Syst Signal Process 41(1–2):705–713. https://doi.org/10.1016/j.ymssp.2013.08.011

    Article  Google Scholar 

  12. Tian F, Yin Z, Li S (2015) Fast tool servo diamond turning of optical freeform surfaces for rear-view mirrors. Int J Adv Manuf Technol 80(9–12):1759–1765. https://doi.org/10.1007/s00170-015-7152-9

    Article  Google Scholar 

  13. Du Kim J, Kim DS (1998) Waviness compensation of precision machining by piezo-electric micro cutting device. Int J Mach Tools Manuf 38(10–11):1305–1322. https://doi.org/10.1016/S0890-6955(97)00080-1

    Article  Google Scholar 

  14. Beekhuis BLT, Brinksmeier E, Garbrecht M, Sölter J (2009) Improving the shape quality of bearing rings in soft turning by using a fast tool servo. Prod Eng 3:469–474. https://doi.org/10.1007/s11740-009-0175-z

    Article  Google Scholar 

  15. Ma H, Hu D, Zhang K (2005) A fast tool feeding mechanism using piezoelectric actuators in noncircular turning. Int J Adv Manuf Technol 27:254–259. https://doi.org/10.1007/s00170-004-2168-6

    Article  Google Scholar 

  16. Zhu Z, To S, Zhu W-L, Huang P, Zhou X (2019) Cutting forces in fast-/slow tool servo diamond turning of micro-structured surfaces. Int J Mach Tools Manuf 136:62–75. https://doi.org/10.1016/J.IJMACHTOOLS.2018.09.003

    Article  Google Scholar 

  17. Zhu L, Li Z, Fang F, Huang S, Zhang X (2018) Review on fast tool servo machining of optical freeform surfaces. Int J Adv Manuf Technol 95:2071–2092. https://doi.org/10.1007/s00170-017-1271-4

    Article  Google Scholar 

  18. Uddin MS (2014) On the influence and optimisation of cutting parameters in finishing of metallic femoral heads of hip implants. Int J Adv Manuf Technol 73:1523–1532. https://doi.org/10.1007/s00170-014-5946-9

    Article  Google Scholar 

  19. Galanis NI, Manolakos DE (2010) Surface roughness prediction in turning of femoral head. Int J Adv Manuf Technol 51:79–86. https://doi.org/10.1007/s00170-010-2616-4

    Article  Google Scholar 

  20. Jamal M, Morgan MN, Peavoy D (2017) A digital process optimization, process design and process informatics system for high-energy abrasive mass finishing. Int J Adv Manuf Technol 92:303–319. https://doi.org/10.1007/s00170-017-0124-5

    Article  Google Scholar 

Download references

Funding

This research is supported by the Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University and Thailand Center of Excellence for Life Sciences (TCELS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pairat Tangpornprasert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keeratihattayakorn, S., Tangpornprasert, P., Prasongcharoen, W. et al. Out-of-roundness compensation technique in machining of femoral head prosthesis using conventional CNC machine. Int J Adv Manuf Technol 107, 2537–2545 (2020). https://doi.org/10.1007/s00170-020-05149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05149-5

Keywords

Navigation