Skip to main content
Log in

Production of Nanocrystalline Ceramics Based on Perovskite-Like Oxides Bi1–xSrxFeO3–𝛅

  • Published:
Refractories and Industrial Ceramics Aims and scope

The formation of ceramics based on Bi1–xSrxFeO3–δ solid solutions produced by glycine-nitrate combustion was studied. The yield of target product was greatest for x = 0 – 0.5. The synthesis temperature range and start of grain sintering correlated with fusion of the surface phase. The sintering activation temperatures and thermal-expansion coefficients of the nanocrystalline ceramics were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Wu, Z. Fan, D. Xiao, J. Zhu, and J. Wang, “Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures,” Prog. Mater. Sci., 84, 335 – 340 (2016); DOI: https://doi.org/10.1016/j.pmatsci.2016.09.001.

    Article  CAS  Google Scholar 

  2. V. I. Popkov, O. V. Almjasheva, V. N. Nevedomskiy, et al., “Effect of spatial constraints on the phase evolution of YFeO3-based nanopowders under heat treatment of glycine-nitrate combustion products,” Ceram. Int., 44(17), 20906 – 20912 (2018); DOI: https://doi.org/10.1016/j.ceramint.2018.08.097.

    Article  CAS  Google Scholar 

  3. O. N. Karpov, M. V. Tomkovich, and E. A. Tugova, “Formation of Nd1–xBixFeO3 nanocrystals under conditions of glycine-nitrate synthesis,” Zh. Obshch. Khim., 88(10), 1692 – 1698 (2018); DOI: https://doi.org/10.1134/S0044460X18100177.

    Article  Google Scholar 

  4. J. Pal, S. Kumar, L. Singh, M. Singh, and A. Singh, “Study of the structural and magnetic phase-transitions and multiferroic properties in BiFeO3–Ba0.95Ca0.05TiO3 solid solutions,” Mater. Res. Bull., 102, 36 – 44 (2018); DOI:https://doi.org/10.1016/j.materresbull.2018.02.012.

  5. N. A. Lomanova, M. V. Tomkovich, V. L. Ugolkov, et al., “Formation mechanism, thermal and magnetic properties of (Bi1–xSrx)m+1Fem–3Ti3O3(m+1)–δ (m = 4 – 7) ceramics,” Nanosyst.: Phys., Chem., Math., 9(5), 676 – 687 (2018); DOI: https://doi.org/10.17586/2220-8054-2018-9-5-676-687.

  6. N. A. Lomanova, “Synthesis and thermal properties of nanoand macrocrystalline ceramic materials based on Bi5FeTi3O15,” Nov. Ogneupory, No. 6, 29 – 33 (2018); DOI: https://doi.org/10.17073/1683-4518-2018-6-29-33.

  7. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, et al., “Thermal and magnetic behavior of BiFeO3 nanoparticles prepared by glycine-nitrate combustion,” J. Nanopart. Res., 20(2), 17 (2018); DOI: https://doi.org/10.1007/s11051-018-4125-6.

  8. N. A. Baharuddin, A. Muchtar, and M. Rao Somalu, “Preparation of SrFe0.5Ti0.5O3–δ perovskite-structured ceramic using the glycine-nitrate combustion technique,” Mater. Lett., 194, 197 – 201 (2017); DOI: https://doi.org/10.1016/j.matlet.2017.02.064.

    Article  CAS  Google Scholar 

  9. N. A. Lomanova, M. V. Tomkovich, V. V. Sokolov, and V. V. Gusarov, “Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method,” Zh. Obshch. Khim., 86(10), 1605 – 1612 (2016); DOI: https://doi.org/10.1134/S1070363216100030.

    Article  CAS  Google Scholar 

  10. V. I. Popkov, E. A. Tugova, A. K. Bachina, and O. V. Almyasheva, “The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides,” Zh. Obshch. Khim., 87(11), 1771 – 1780 (2017).

  11. E. Tugova, S. Yastrebov, O. Karpov, and R. Smith, “NdFeO3 nanocrystals under glycine nitrate combustion formation,” J. Cryst. Growth., 467, 88 – 92 (2017); DOI:https://doi.org/10.1016/j.jcrysgro.2017.03.022.

    Article  CAS  Google Scholar 

  12. N. Gao, C. Quan, Y. Maa, et al., “Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: Structure, electronic, optical and magnetic properties,” Phys. B, 481, 45 – 52 (2016).

    Article  CAS  Google Scholar 

  13. I. Sosnowska, T. P. Neumaier, and E. Streichele, “Spiral magnetic ordering in bismuth ferrite,” J. Phys. C: Solid State Phys., 15, 4835 – 4846 (1982); DOI: https://doi.org/10.1088/0022-3719/15/23/020.

    Article  CAS  Google Scholar 

  14. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, “Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides,” Zh. Obshch. Khim., 73(11), 1772 – 1776 (2003); DOI: https://doi.org/10.1023/B:RUGC.0000018640.30953.70.

    Article  Google Scholar 

  15. M. Valant, A.-K. Axelsson, and N. Alford, “Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3,” Chem. Mater., 19, 5431 – 5436 (2007); DOI: https://doi.org/10.1021/cm071730+.

    Article  CAS  Google Scholar 

  16. N. A. Lomanova and V. V. Gusarov, “Phase states in the Bi4Ti3O12-BiFeO3 section in the Bi2O3–TiO2–Fe2O3 system,” Zh. Neorg. Khim., 56(4), 661 – 665 (2011); DOI: https://doi.org/10.1134/S0036023611040188.

    Article  CAS  Google Scholar 

  17. V. V. Gusarov, “The thermal effect of melting in polycrystalline systems,” Thermochim. Acta, 256(2), 467 – 472 (1995); DOI: https://doi.org/10.1016/0040-6031(94)01993-Q.

    Article  CAS  Google Scholar 

  18. A. N. Kovalenko and E. A. Tugova, “Thermodynamics and kinetics of non-autonomous phase formation in nanostructured materials with variable functional properties,” Nanosyst.: Phys., Chem., Math., 9(5), 641 – 662 (2018); DOI: https://doi.org/10.17586/2220-8054-2018-9-5-641-662.

  19. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Adv., 32, 751 (1976).

  20. N. A. Lomanova, V. L. Ugolkov, and V. V. Gusarov, “Thermal behavior of layered pervoskite-like compounds in the Bi4Ti3O12–BiFeO3 system,” Fiz. Khim. Stekla, 33(6), 608 – 612 (2007); DOI: https://doi.org/10.1134/S1087659607060120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Lomanova.

Additional information

Translated from Novye Ogneupory, No. 10, pp. 33 – 37, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A., Osipov, A.V. & Ugolkov, V.L. Production of Nanocrystalline Ceramics Based on Perovskite-Like Oxides Bi1–xSrxFeO3–𝛅. Refract Ind Ceram 60, 501–505 (2020). https://doi.org/10.1007/s11148-020-00393-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00393-4

Keywords

Navigation