Skip to main content
Log in

Phytoplankton Bloom and Photosynthetically Active Radiation in Coastal Waters

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of a phytoplankton bloom on the change with depth of photosynthetically available radiation (PAR), the spectral downwelling irradiance in coastal waters, and the phytoplankton ability to absorb PAR in the sea is estimated. The 10-fold increase in the chlorophyll a concentration (from 0.4 to 4.0 mg/m3) during a diatom/ dinoflagellate bloom leads to a decrease in water transparency and a narrowing of the photosynthesis zone. As a consequence, the average PAR within the phytoplankton habitat layer is almost halved. A diatom/dinoflagellate bloom is accompanied by changes in the downwelling irradiance spectrum at the same PAR level (optical depths). The penetrating irradiance maximum near the bottom of the euphotic zone shifts to longer wavelengths (~550–600 nm) as compared to background conditions (~500–550 nm). The increase in diatom/dinoflagellate biomass and the concomitant change in the downwelling irradiance spectrum are accompanied by a decrease in the specific absorption coefficient of phytoplankton pigments up to about three times that under background conditions at the same optical depths. The downwelling irradiance spectrum at fixed optical depths and the ability of cells to absorb light change slightly as compared to background conditions when coccolithophores bloom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. R. Parsons, M. Takahashi, and B. Hargrave, Biological Oceanographic Processes, Pergamon Press, Oxford (1977).

    Google Scholar 

  2. J. E. G. Raymont, Plankton and Productivity in the Oceans, 2nd edn., Pergamon, Oxford (1980).

    Google Scholar 

  3. S. Moncheva, O. Gotsis-Skretas, K. Pagou, and A. Krastev, Estuarine Coastal Shelf Sci., 53, 281–295 (2001).

    Article  ADS  Google Scholar 

  4. L. V. Georgieva, Black Sea Plankton [in Russian], Naukova Dumka, Kiev (1993), pp. 31–55.

    Google Scholar 

  5. T. J. Smayda, Limnol. Oceanogr., 42, No. 5, Pt. 2, 1132–1136 (1997).

  6. J. G. Ferreira, J. H. Andersen, A. Borja, S. B. Bricker, J. Camp, M. Cardoso da Silva, and U. Claussen, Estuarine Coastal Shelf Sci., 93, No. 2, 117–131 (2011); doi: https://doi.org/10.1016/j.ecss.2011.03.014.

    Article  ADS  Google Scholar 

  7. Yu. P. Zaitsev, B. G. Aleksandrov, and G. G. Minicheva (Eds.), Phytoplankton: Open Regions. Northwestern Black Sea: Biology and Ecology [in Russian], Naukova Dumka, Kiev (2006), pp. 175–184.

  8. Z. Z. Finenko, T. Ya. Churilova, A. V. Parkhomenko, and S. Tugrul, Morsk. Ekol. Zh., No. 4, 75–84 (2008) [in English].

  9. BSC, 2008. State of the Environment of the Black Sea (2001-2 2006/7), Temel Oguz (Ed.), Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC) 2008-3 3, Istanbul, Turkey (2008), p. 448.

  10. T. Churilova, N. Moiseeva, T. Efimova, V. Suslin, O. Krivenko, and E. Zemlianskaia, 23rd Int. Symp. Atmospheric and Ocean Optics, Atmospheric Physics, 104664B, Nov. 30, 2017, (2017); doi 10.1117/12.2288339, URL: http://dx.doi. org/10.1117/12.2288339.

  11. Z. Z. Finenko, L. V. Stelmakh, I. M. Mansurova, E. Yu. Georgieva, and V. S. Tsilinskii, Sist. Kontrolya Okruzh. Sredy, No. 9 (29), 73–82 (2017).

  12. L. V. Stel’makh, I. I. Babich, and S. V. Lyashenko, Ekol. Morya, 61, 64–68 (2002).

    Google Scholar 

  13. A. A. Dzhulai, Ecological Safety of Coastal and Shelf Zones and Comprehensive Use of Shelf Resources, No. 25–2 (2011), pp. 357–369.

  14. V. I. Man’kovskii, Principles of Ocean Optics [in Russian], Marine Hydrophysical Inst., Izd. Sevastopol (1996), p. 119.

    Google Scholar 

  15. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystem, UK Cambridge University Press, Cambridge (2011), Vol. 3.

    Google Scholar 

  16. V. I. Man’kovskii, E. V. Man’kovskaya, and M. V. Solov’ev, Hydrooptic Characteristics of the Black Sea, Handbook [in Russian], MGI NAN Ukrainy, Sevastopol (2009).

  17. A. S. Kukushkin, Opt. Atmos. Okeana, 26, No. 2, 113–123 (2013).

    Google Scholar 

  18. W. Wang and J. Zhao, Acta Oceanol. Sin., 33, No. 6, 53–62 (2014); doi: https://doi.org/10.1007/s13131-014-0489-3.

    Article  Google Scholar 

  19. E. T. Harvey, J. Walve, A. Andersson, B. Karlson, and S. Kratzer, Front. Mar. Sci., 5, 496 (2019); doi: https://doi.org/10.3389/fmars.2018.00496.

    Article  Google Scholar 

  20. A. U. Bracher and M. M. Tilzer, Polar Biol., 24, No. 9, 687–696 (2001).

    Article  Google Scholar 

  21. A. Morel, Prog. Oceanogr., 26, 263–306 (1991).

    Article  ADS  Google Scholar 

  22. S. V. Vazyulya and S. V. Sheberstov, in: Proceedings of the IXth All-Russian Conf. "Current Problems of Natural Water Optics" [in Russian], September 20–22, 2017, St. Petersburg (2017), pp. 229–234.

  23. V. V. Suslin, A. A. Latushkin, and O. V. Martynov, in: 24th Int. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, 108333I, Dec. 13, 2018 (2018); doi: 10.1117/12.2503272; https://doi.org/10.1117/12.2503272.

  24. T. Churilova, V. Suslin, O. Krivenko, T. Efimova, N. Moiseeva, V. Mukhanov, and L. Smirnova, Front. Mar. Sci., 4, 90 (2017); doi: https://doi.org/10.3389/fmars.2017.00090.

    Article  Google Scholar 

  25. T. Churilova, V. Suslin, H. M. Sosik, T. Efimova, N. Moiseeva, S. Moncheva, V. Mukhanov, O. Rylkova, and O. Krivenko, Eur. J. Remote Sens., 52, Suppl. 1, 123–136 (2019); doi: https://doi.org/10.1080/22797254.2018.1533389.

    Article  Google Scholar 

  26. T. Churilova, V. Suslin, and H. M. Sosik, Phys. Oceanogr., 19, No. 6, 366–378 (2009).

    Article  Google Scholar 

  27. T. Ya. Churilova, V. V. Suslin, O. V. Krivenko, T. V. Efimova, and N. A. Moiseeva, Zh. Sib. Fed. Univ., Biol., 9, No. 4, 367–384 (2016).

    Article  Google Scholar 

  28. S. W. Jeffrey and G. F. Humphrey, Biochem. Physiol. Pfl anz., 167, 191–197 (1975); doi: https://doi.org/10.1016/S0015-3796(17)30778-3.

    Article  Google Scholar 

  29. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, NASA Goddard Space Flight Center (2003), pp. 39–64.

  30. V. A. Ivanov and V. N. Belokopytov, Oceanography of the Black Sea, National Academy of Sciences of Ukraine, Marine Hydrophysical Institute, Sevastopol (2011), p. 210.

    Google Scholar 

  31. G. P. Berseneva, T. Ya. Churilova, and L. V. Georgieva, Okeanologiya, 44, No. 3, 389–398 (2004).

    Google Scholar 

  32. S. W. Jeffrey, R. F. C. Mantoura, and S. W. Wright (eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, UNESCO Publishing (1997), p. 661.

  33. T. Ya. Churilova, Z. Z. Finenko, and A. I. Akimov, EKOSI-Gidrofizika, (2008), pp. 301–319.

  34. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. S. Smith, K. S. Baker, and D. K. Clark, J. Geophys. Res., 93, No. D9, 10909–10924 (1988).

    Article  ADS  Google Scholar 

  35. R. C. Smith and K. S. Baker, Appl. Opt., 20, 177–184 (1981).

    Article  ADS  Google Scholar 

  36. R. M. Pope and E. S. Fry, Appl. Opt., 36, 8710–8723 (1997).

    Article  ADS  Google Scholar 

  37. A. Bricaud, M. Babin, A. Morel, and H. Claustre, J. Geophys. Res., 100, C7, 13321–13332 (1995).

    Article  ADS  Google Scholar 

  38. V. V. Suslin, S. N. Korolev, A. A. Kucheryaviy, T. Ya. Churilova, and O. V. Krivenko, in: 21st Int. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, Nov. 19, 2015 (2015); http://dx.doi.org/10.1117/12.2203660.

  39. K. S. Shifrin, Optics of the Ocean, Physics of the Ocean [in Russian], Nauka, Moscow (1978), Vol. 1, pp. 340–396.

    Google Scholar 

  40. M. Babin, A. Morel, H. Claustre, A. Bricaud, Z. Kolber, and P. Falkowski, Deep-Sea Res., 43, 1241–1272 (1996).

    Article  Google Scholar 

  41. D. Atlas and T. T. Bannister, Limnol. Oceanogr., 25, 157–159 (1980).

    Article  ADS  Google Scholar 

  42. H. L. MacIntyre, T. M. Kana, J. Anning, and R. Geider, J. Phycol., 38, 17–38 (2002).

    Article  Google Scholar 

  43. M. J. Behrenfeld, R. T. O'Malley, E. S. Boss, T. K. Westberry, J. R. Graff, K. H. Halsey, A. J. Milligan, D. A. Siegel, and M. B. Brown, Nat. Clim. Change, 6, No. 3, 323–330 (2015); doi:https://doi.org/10.1038/nclimate2838.

    Article  ADS  Google Scholar 

  44. Yu. I. Sorokin, The Black Sea: Ecology and Oceanography. Biology of Inland Waters, Backhuys Publishers, Leiden (The Netherlands) (2002), p. 875; ISBN: 90–5782–105–2.

  45. V. D. Chmyr, A. S. Bologa, Z. P. Burlakova, and V. I. Kholodov, Primary Production of the Western Part of the Sea in Spring. Water Dynamics and Phytoplankton Productivity of the Black Sea [in Russian], IOAN SSSR, Moscow (1988), pp. 301–314.

    Google Scholar 

  46. C. Gameiro, J. Zwolinski, and V. Brotas, Hydrobiologia, 669, 249–263 (2011); doi: https://doi.org/10.1007/s10750-011-0695-3.

    Article  Google Scholar 

  47. T. Churilova, V. Suslin, N. Moiseeva, and T. Efimova, in: 24th Int. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, 1083365, December 13, 2018 (2018); doi: https://doi.org/10.1117/12.2504637.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ya. Churilova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 6, pp. 976–985, November–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churilova, T.Y., Suslin, V.V., Moiseeva, N.A. et al. Phytoplankton Bloom and Photosynthetically Active Radiation in Coastal Waters. J Appl Spectrosc 86, 1084–1091 (2020). https://doi.org/10.1007/s10812-020-00944-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-020-00944-0

Keywords

Navigation