Skip to main content
Log in

The necessity for molecular classification of basidiomycetous biocontrol yeasts

  • Forum Paper
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The field of plant protection is steadily reducing the use of chemicals by increasing the use of microbial biocontrol agents. At present, several microorganisms are active ingredients of the so-called biofungicides and some of these are based on yeasts. Molecular techniques applied in microbial taxonomy are leading to extensive revisions of the classification of many microbial groups, including various yeasts used for biocontrol. Recent taxonomic revision of the basidiomycete genus Cryptococcus resulted in C. laurentii (Kufferath) Skinner (Tremellales) being renamed as Papiliotrema laurentii, including strains displaying biocontrol activity, such as strain LS28. In this study, we performed comparisons of ITS, D1D2, TEF1, and RPB1 nucleotide sequences of LS28 with the corresponding genes of the type strains of taxonomically related species. We found that the yeast strain LS28 belongs to the species P. terrestris (Tremellales) (Crestani et al. Int J Syst Evol Microbiol 59:631–636, 2009) rather than P. laurentii. We encourage other groups working on biocontrol to perform molecular characterization of their yeast(s) of interest to identify the species that have the highest potential for practical applications and facilitate possible commercial registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnett JA (2004) A history of research on yeasts 8: taxonomy. Yeast 21:1141–1193

    CAS  PubMed  Google Scholar 

  • Bautista-Rosales PU, Calderon-Santoyo M, Servín-Villegas R, Ochoa-Álvarez NA, Vázquez-Juárez R, Ragazzo-Sánchez JA (2014) Biocontrol action mechanisms of Cryptococcus laurentii on Colletotrichum gloeosporioides of mango. Crop Prot 65:194–201

    Google Scholar 

  • Bereswill R, Streloke M, Schulz R (2014) Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale. Integr Environ Assess Manag 10:286–298

    CAS  PubMed  Google Scholar 

  • Biswas SK, Yokoyama K, Nishimura K, Miyaji M (2001) Molecular phylogenetics of the genus Rhodotorula and related basidiomycetous yeasts inferred from the mitochondrial cytochrome b gene. Int J Syst Evol Microbiol 51:1191–1199

    CAS  PubMed  Google Scholar 

  • Castoria R, De Curtis F, Lima G, De Cicco V (1997) β-1,3-glucanase activity of two saprophytic yeasts and possible mode of action as biocontrol agents against postharvest diseases. Postharvest Biol Technol 12:293–300

    CAS  Google Scholar 

  • Castoria R, De Curtis F, Lima G, Caputo L, Pacifico S, De Cicco V (2001) Aureobasidium pullulans (LS-30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biol Technol 22:7–17

    Google Scholar 

  • Castoria R, Caputo L, De Curtis F, De Cicco V (2003) Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 93:564–572

    CAS  PubMed  Google Scholar 

  • Castoria R, Morena V, Caputo L, Panfili G, De Curtis F, De Cicco V (2005) Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 95:1271–1278

    CAS  PubMed  Google Scholar 

  • Castoria R, Mannina L, Durán-Patrón R, Maffei F, Sobolev AP, De Felice DV, Pinedo-Rivilla C, Ritieni A, Ferracane R, Wright SAI (2011) Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J Agric Food Chem 59:11571–11578

    CAS  PubMed  Google Scholar 

  • Chan Z, Tian S (2005) Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biol Technol 36:215–223

    CAS  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc London [Biol] 366:1987–1998

    Google Scholar 

  • Chapman P (2014) Is the regulatory regime for the registration of plant protection products in the EU potentially compromising food security? Food Energy Secur 3:1–6

    Google Scholar 

  • Cheng Z, Chi M, Li G, Chen H, Sui Y, Sun H, Wisniewski M, Liu Y, Liu J (2016) Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biol Control 95:49–56

    CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Basidiomycetous yeasts: current status. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 19–46

    Google Scholar 

  • Crestani J, Fontes Landell M, Faganello J, Henning Vainstein M, Simpson Vishniac H, Valente P (2009) Cryptococcus terrestris sp. nov., a tremellaceous, anamorphic yeast phylogenetically related to Cryptococcus flavescens. Int J Syst Evol Microbiol 59:631–636

    CAS  PubMed  Google Scholar 

  • De Curtis F (1998) Yeasts in the biological control against post-harvest fungal pathogens of fruit and vegetables: activities and mechanisms of action involved. PhD Thesis, National Libraries of Rome and Florence (In Italian)

  • De Curtis F, Lima G, De Cicco V (2012) Efficacy of biocontrol yeasts combined with calcium silicate or sulphur for controlling durum wheat powdery mildew and increasing grain yield components. Field Crop Res 134:36–46

    Google Scholar 

  • De Curtis F, Ianiri G, Raiola A, Ritieni A, Succi M, Tremonte P, Castoria R (2019) Integration of biological and chemical control of brown rot of stone fruits to reduce disease incidence on fruits and minimize fungicide residues in juice. Crop Prot 119:158–165

    Google Scholar 

  • Ferreira-Paim K, Ferreira TB, Andrade-Silva L, Mora DJ, Springer DJ, Heitman J, Fonseca FM, Matos D, Melhem MSC, Silva-Vergara ML (2014) Phylogenetic analysis of phenotypically characterized Cryptococcus laurentii isolates reveals high frequency of cryptic species. PLoS ONE 9(9):e108633

    PubMed  PubMed Central  Google Scholar 

  • Frederiks C, Wesseler JHH (2019) A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Manag Sci 75:87–103

    CAS  PubMed  Google Scholar 

  • Hierro N, González Á, Mas A, Guillamón JM (2004) New PCR-based methods for yeast identification. J Appl Microbiol 97:792–801

    CAS  PubMed  Google Scholar 

  • Ianiri G, Idnurm A, Wright SA, Durán-Patrón R, Mannina L, Ferracane R, Ritieni A, Castoria R (2013) Searching for genes responsible for patulin degradation in a biocontrol yeast provides insight into the basis for resistance to this mycotoxin. Appl Environ Microbiol 79:3101–3115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 2:111–120

    Google Scholar 

  • Knillmann S, Liess M (2019) Pesticide effects on stream ecosystems. In: Schröter M, Bonn A, Klotz S, Seppelt R, Baessler C (eds) Atlas of ecosystem services: drivers, risks, and societal responses. Springer, Cham, pp 211–214

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 7:1870–1874

    Google Scholar 

  • Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny—implications of molecular identification methods for studies in ecology. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30

    Google Scholar 

  • Lefebvre M, Langrell SRH, Gomez-y-Paloma S (2015) Incentives and prices for integrated pest management in Europe: a review. Agron Sustain Dev 35:27–45

    CAS  Google Scholar 

  • Lima G, De Curtis F, Castoria R, De Cicco V (1998) Activity of the yeasts Cryptococcus laurentii and Rhodotorula glutinis against post-harvest rots on different fruits. Biocontrol Sci Technol 8:257–267

    Google Scholar 

  • Lima G, Arru S, De Curtis F, Arras G (1999) Influence of antagonist, host fruit and pathogen on the biological control of postharvest fungal diseases by yeasts. J Ind Microbiol Biotechnol 23:223–229

    CAS  Google Scholar 

  • Lima G, De Curtis F, Piedimonte D, Spina AM, De Cicco V (2006) Integration of biocontrol yeast and thiabendazole protects stored apples from fungicide sensitive and resistant isolates of Botrytis cinerea. Postharvest Biol Technol 40:301–307

    CAS  Google Scholar 

  • Lima G, Castoria R, De Curtis F, Raiola A, Ritieni A, De Cicco V (2011) Integrated control of blue mould using new fungicides and biocontrol yeasts lowers levels of fungicide residues and patulin contamination in apples. Postharvest Biol Technol 60:164–172

    CAS  Google Scholar 

  • Lima G, De Curtis F, Castoria R, De Cicco V (2003) Integrated control of apple postharvest pathogens and survival of biocontrol yeasts in semi-commercial conditions. Eur J Plant Pathol 109:341–349

    CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015a) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    PubMed  Google Scholar 

  • Liu XZ, Wang QM, Theelen B, Groenewald M, Bai FY, Boekhout T (2015b) Phylogeny of Tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 81:1–26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch DB, Logue ME, Butler G, Wolfe KH (2010) Chromosomal G + C content evolution in yeasts: systematic interspecies differences, and GC-poor troughs at centromeres. Genome Biol Evol 2:572–583

    PubMed  PubMed Central  Google Scholar 

  • Meng XH, Qin GZ, Tian SP (2010) Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. Lebensm Wiss Technol 43:596–601

    CAS  Google Scholar 

  • Miccoli C, Palmieri D, De Curtis F, Lima G, Ianiri G, Castoria R (2018) Complete genome sequence of the biocontrol agent yeast Rhodotorula kratochvilovae strain LS11. Genome Announc 6(10):e00120–e218

    PubMed  PubMed Central  Google Scholar 

  • Mycobank.org (2019) See https://www.mycobank.org/BioloMICS.aspx?TableKey=14682616000000067&Rec=544522&Fields=All

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    PubMed  PubMed Central  Google Scholar 

  • Parnell JJ, Berka R, Young HA, Sturino JM, Kang Y, Barnhart DM, Di Leo MV (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110

    PubMed  PubMed Central  Google Scholar 

  • Pinedo C, Wright SAI, Collado GI, Goss RJM, Castoria R, Hrelia P, Maffei F, Duran-Patròn R (2018) Isotopic labeling studies reveal the patulin detoxification pathway by the biocontrol yeast Rhodotorula kratochvilovae LS11. J Nat Prod 81:2692–2699

    CAS  PubMed  Google Scholar 

  • Pretscher J, Fischkal T, Branscheidt S, Jäger L, Kahl S, Schlander M, Thines E, Claus H (2018) Yeasts from different habitats and their potential as biocontrol agents. Fermentation 4:31

    Google Scholar 

  • Qin GZ, Tian SP (2004) Biocontrol of postharvest diseases of jujube fruit by Cryptococcus laurentii combined with a low dosage of fungicides under different storage conditions. Plant Dis 88:497–501

    PubMed  Google Scholar 

  • Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80:756–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong X, McSpadden Gardener BB (2013) Draft genome sequence of Cryptococcus flavescens strain OH182.9_3C, a biocontrol agent against Fusarium head blight of wheat. Genome Announc 1(5):e00762–e813

    PubMed  PubMed Central  Google Scholar 

  • Rychen G, Aquilina G, Azimonti G, Bampidis V, de Lourdes BM, Bories G, Chesson A, Cocconcelli PS, Flachowsky G, Gropp J, Kolar B, Kouba M, López-Puente S, López-Alonso M, Mantovani A, Mayo B, Ramos F, Rychen G, Saarela M, Villa RE, Wallace RJ, Wester P (2018) Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA FEEDAP Panel 16:5206

    Google Scholar 

  • Sampaio JP, Weiß M, Gadanho M, Bauer R (2002) New taxa in the tremellales: Bulleribasidium oberjochense gen. et sp. nov., Papiliotrema bandonii gen. et sp. nov. and Fibulobasidium murrhardtense sp. nov. Mycologia 94:873–887

    CAS  PubMed  Google Scholar 

  • Sarkar S, Chakravorty S, Mukherjee A, Bhattacharya D, Bhattacharya S, Gachhui R (2018) De novo RNA-Seq based transcriptome analysis of Papiliotrema laurentii strain RY1 under nitrogen starvation. Gene 645:146–156

    CAS  PubMed  Google Scholar 

  • Sugita T, Takashima M, Ikeda R, Nakase T, Shinoda T (2000) Intraspecies diversity of Cryptococcus laurentii as revealed by sequences of internal transcribed spacer regions and 28S rRNA gene and taxonomic position of C. laurentii clinical isolates. J Clin Microbiol 38:1468–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundh I, Melin P (2011) Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Anton Leeuw Int J Gen 99:113–119

    Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 10:2731–2739

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genom 14:913

    Google Scholar 

  • Valente P, Ramos JP, Leoncini O (1999) Sequencing as a tool in yeast molecular taxonomy. Can J Microbiol 45:949–958

    CAS  PubMed  Google Scholar 

  • Wang QM, Groenewald M, Takashima M, Theelen B, Han PJ, Liu XZ, Boekhout T, Bai FY (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53

    PubMed  PubMed Central  Google Scholar 

  • Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189

    PubMed  Google Scholar 

  • Wisniewski M, Droby S, Norelli J, Liu J, Schena L (2016) Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biol Technol 122:3–10

    Google Scholar 

  • Yan F, Xu S, Chen Y, Zheng X (2014) Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit. Postharvest Biol Technol 97:32–35

    CAS  Google Scholar 

  • Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á (2015) Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS ONE 10(3):e0120400

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang L, Dong Y, Jiang S, Cao MR (2007) Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol Control 40:287–292

    Google Scholar 

  • Zhang HY, Zheng XD, Xi YF (2005) Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner. BioControl 50:331–342

    Google Scholar 

  • Zheng XD, Zhang HY, Sun P (2005) Biological control of postharvest green mold decay of oranges by Rhodotorula glutinis. Eur Food Res Technol 220:353–357

    CAS  Google Scholar 

  • Zheng X, Yang Q, Zhang X, Apaliya MT, Ianiri G, Zhang H, Castoria R (2017) Biocontrol agents increase the specific rate of patulin production by Penicillium expansum but decrease the disease and total patulin contamination of apples. Front Microbiol 8:1240

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Joseph Heitman is co-director and fellow of the CIFAR program—Fungal kingdom: Threats and Opportunities Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raffaello Castoria or Giuseppe Ianiri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving with human and animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Handling editor: Éverton Kort Kamp Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miccoli, C., Palmieri, D., De Curtis, F. et al. The necessity for molecular classification of basidiomycetous biocontrol yeasts. BioControl 65, 489–500 (2020). https://doi.org/10.1007/s10526-020-10008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10008-z

Keywords

Navigation