Skip to main content

Advertisement

Log in

Environmental footprint of cultivating strawberry in Spain

  • LCA FOR AGRICULTURE
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Strawberry is cultivated worldwide under different production systems. The Life Cycle Assessment (LCA) methodology has been applied to evaluate the environmental footprint of different strawberry production systems in Spain, considering from the raw material extraction of inputs up to the farm gate, including transport of waste to the treatment plant.

Methods

Data from eight systems representing the actual situation of the production systems of strawberry in Spain were gathered: five macrotunnel, two microtunnel, and one open field systems, in soil and soilless, and with conventional, integrated, and organic management. Two functional units were considered: 1 ha of cultivated surface and 1 t of produced strawberry at farm gate. Crop practices were grouped in different stages: structure, auxiliary equipment, fertilizers, pesticides, and crop management. The impact categories selected for the environmental analysis and assessment were climate change, ozone depletion, photochemical ozone formation, acidification, freshwater eutrophication, and freshwater ecotoxicity.

Results and discussion

The most innovative systems (macrotunnel soilless integrated and conventional) offered less environmental impacts per t for all categories compared with the rest of the systems, especially macrotunnel soilless integrated. However, the organic strawberries showed the lowest environmental impacts in most categories per ha but their productivity was also low compared with the protected systems. Organically grown strawberries should aim at improving productivity, which might be achieved by optimizing the use of compost. The open field strawberry production system was not environmentally friendly compared with the protected systems. Fertilizers were the stage that acquired the most importance in most of the environmental categories and cropping systems. Acidification, eutrophication, and ecotoxicity were the categories with the highest impacts in all the strawberry production systems (11.3 molc H+ eq/t, 0.37 kg P eq/t and 26,300 CTUe/t, respectively, in the open field system). The optimization of fertilization management, the use of recycled materials and/or with longer service life, and the use of renewable energy could be effective in decreasing the environmental impacts.

Conclusions

The decision for technological innovations needed in the strawberry sector may be supported by environmental studies. The use of more rational farming techniques, such as those implemented in integrated crop production, can reduce environmental burdens in open field systems. Decision support systems on nutrient management and provisions for training programs for farmers should be considered on this highly sensitive area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrodiario (2017). Edición especial frutos rojos. Huelva. Junio 2017 (in Spanish)

  • Antón A, Torrellas M, Nuñez M, Sevigne E, Amores MJ, Muñoz P, Montero JI (2014) Improvement of agricultural life cycle assessment studies through spatial differentiation and new impact categories: case study on greenhouse tomato production. Environ Sci Technol 48(16):9454–9462. https://doi.org/10.1021/es501474y

    Article  CAS  Google Scholar 

  • Audsley E (2000) Systematic procedures for calculating agricultural performance data for comparing systems. In: Weidema B, Meeusen M (eds) Agricultural data for life cycle assessments, vol 1. Agricultural Economics Research Institute, The Haugue, pp 35–46

    Google Scholar 

  • Biswas WK, Lucas NJD (1997) Economic viability of biogas technology in a Bangladesh village. Energy 22(8):763–770. https://doi.org/10.1016/S0360-5442(97)00010-8

    Article  Google Scholar 

  • BOJA (2012) DECRETO 73/2012, de 20 de marzo, por el que se aprueba el Reglamento de Residuos de Andalucía. Núm. 81 (in Spanish)

  • BOJA (2013) Reglamento Andaluz de Producción Integrada de Fresas (Orden 3 Julio de 2013, publicado en BOJA de 9 de Julio de 2013). Núm. 132 (in Spanish)

  • CE (2007) Reglamento (CE) n° 834/2007 del Consejo, de 28 de junio de 2007, sobre producción y etiquetado de los productos ecológicos y por el que se deroga el Reglamento (CEE) n° 2092/91. DOUE-L-2007-81282. DOUE 189, 1–23 (in Spanish)

  • Cerutti AK, Beccaro GL, Bruun S, Bosco S, Donno D, Notarnicola B, Bounous G (2014) LCA application in the fruit sector: state of the art and recommendations for environmental declarations of fruit products. J Clean Prod 73:125–135. https://doi.org/10.1016/j.jclepro.2013.09.017

    Article  Google Scholar 

  • Clavreul J, Butnar I, Rubio V, King H (2017) Intra-and inter-year variability of agricultural carbon footprints. A case study on field-grown tomatoes. J Clean Prod 158:156–164. https://doi.org/10.1016/j.jclepro.2017.05.004

    Article  Google Scholar 

  • Ecoinvent (2016) Ecoinvent database v.3.2. Swiss Centro for Life Cycle Inventories. www.ecoinvent.org/database/

  • EEA (2013) EMEP/EEA air pollutant emission inventory guidebook 2013. Technical guidance to prepare national emission inventories EEA Technical report No 12/2013 European Environmental Agency

  • European Commission, Joint Research Centre, Institute for Environment and Sustainability (2012) Characterization factors of the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting Information. First edition. February 2012. EUR 25167. Luxembourg. Publications office of the European Union

  • FAOSTAT (2019) The FAO (Food and Agriculture Organization of the United Nations). Statistical Database. http://www.fao.org/faostat/

  • Fernández-Hernández A, Roig A, Serramiá N, García-Ortiz Civantos C, Sánchez-Monedero MA (2014) Application of compost of two-phase olive mil waste on olive grove: effects on soil, olive fruit and olive oil quality. Waste Manag 34:1139–1147. https://doi.org/10.1016/j.wasman.2014.03.027

    Article  CAS  Google Scholar 

  • Girgenti V, Peano C, Baudino C, Tecco N (2014) From “farm to fork” strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and greenhouse gas emissions. Sci Total Environ 473-474:48–53. https://doi.org/10.1016/j.scitotenv.2013.11.133

    Article  CAS  Google Scholar 

  • Gunady MGA, Biswas W, Solah VA, James AP (2012) Evaluating the global warming potential of the fresh produce supply chain strawberries, romaine/cos lettuces (Lactuca sativa), and button mushrooms (Agaricus bisporus) in Western Australia using life cycle assessment (LCA). J Clean Prod 28:81–87. https://doi.org/10.1016/j.jclepro.2011.12.031

    Article  Google Scholar 

  • He X, Qiao Y, Liu Y, Dendler L, Yin C, Martín F (2016) Environmental impact assessment of organic and conventional tomato production in urban greenhouses of Beijing city, China. J Clean Prod 134:251–258. https://doi.org/10.1016/j.jclepro.2015.12.004

    Article  CAS  Google Scholar 

  • IFAPA (2013) Informe del sobrecoste derivado del cumplimiento de las medidas obligatorias de la producción integrada en el cultivo del fresón (IFAPA, Consejería de Agricultura, Pesca y Desarrollo Rural, 2013) (in Spanish)

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories: volume 4, agriculture, forestry and other land use. Chapter 10, authors: Dong H, Mangino J, Mcallister TA, Hatfield JL, Johnson DE, Lassey KR, de Lima MA, Romanovskaya, A. Emissions from livestock and manure management. Intergovernmental Panel on Climate Change

  • ISO-14040 (2006) Environmental management—life cycle assessment—principles and framework. International Organization for Standardization ISO, Geneva

    Google Scholar 

  • Kaisheng Z, Jiaan Z, Guofa G (2009) Research on simulating-human intelligent control method for the cold-storage of fruits and vegetables. In: Ninth International Conference on Hybrid Intelligent Systems, Shenyang, LiaoNing, China, August 12–14

  • Khoshnevisan B, Rafiee S, Mousazadeh H (2013) Environmental impact assessment of open field and greenhouse strawberry production. Eur J Agron 50:29–37. https://doi.org/10.1016/j.eja.2013.05.003

    Article  Google Scholar 

  • Lillywhite R, Chandler D, Grant W, Lewis K, Firth C, Schmutz U, Halpin D (2007). Environmental footprint and sustainability of horticulture (including potatoes) - a comparison with other agricultural sectors. Final report of Defra project WQ0101. University of Warwick & Defra, London

  • López Aranda JM (2008) El cultivo de la fresa en Huelva. La fresa de Huelva. Consejería de Agricultura y Pesca. Junta de Andalucía, 148–154

  • MAPAMA (2016) Registro de productos fitosanitarios (in Spanish). http://www.mapama.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/fitos.asp

  • MAPAMA (2019a) Anuario de estadística, 2016. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid 2017 (in Spanish)

  • MAPAMA (2019b) Estadísticas de producción integrada, 2015. Superficies dedicadas a producción integrada por cultivos y comunidades autónomas. Ministerio de Agricultura, Alimentación y Medio Ambiente (in Spanish)

  • Mordini M, Nemecek T, Gaillard G (2009) Carbon & water footprint of oranges and strawberries, a literature review. Federal department of economic affairs (FDEA), Switzerland

  • Nemecek T, Erzinger S (2005) Modelling representative life cycle inventories for Swiss arable crops. Int J Life Cycle Assess 10(1):1–9. https://doi.org/10.1065/lca2004.09.181.8

    Article  CAS  Google Scholar 

  • Nemecek T, Kägi T (2007) Life cycle inventories of agricultural production systems. Data v2.0. ecoinvent report No. 15

  • Notarnicola B, Salomone R, Petti L, Renzulli PA, Roma R, Cerutti AK (2015) Life cycle assessment in the agri-food sector. Case Studies, Methodological Issues and Best Practices. Springer. London. 2015

  • Official Journal of de European Union (2014) Opinion of the European Economic and Social Committee on “Integrated Production in the European Union” (own-initiative opinion) (2014/C 214/02)

  • Peano C, Baudino C, Tecco N, Girgenti V (2015) Green marketing tools for fruit growers associated groups: application of the life cycle assessment (LCA) or strawberries and berry fruits ecobranding in northern Italy. J Clean Prod 104:59–67. https://doi.org/10.1016/j.jclepro.2015.04.087

    Article  CAS  Google Scholar 

  • Pishgar-Komleh SH, Akram A, Keyhani A, Raei M, Elshout PMF, Huijbregts MAJ, van Zelm R (2017) Variability in the carbon footprint of open-field tomato production in Iran. A case study of Alborz and East-Azerbaijan provinces. J Clean Prod 142:1510–1517. https://doi.org/10.1016/j.jclepro.2016.11.154

    Article  CAS  Google Scholar 

  • Pré Consultants bv (2017) SimaPro 8.5.2.0. Amersfoort. The Netherlands

  • RAIF (2017) Red de Alerta e Información Fitosanitaria (RAIF) (in Spanish). http://raif.cap.junta-andalucia.es/

  • Reganold J, Andrews P, Reeve J, Carpenter-Boggs L, Schadt C, Alldredge R, Ross C, Davies N, Zhou J (2010) Fruit and soil quality of organic and conventional strawberry agrosystems. PLoS One 5(9):e12346. https://doi.org/10.1371/journal.pone.0012346

  • Regional Government of Andalusia (2009) Parque Nacional de Doñana, Junta de Andalucía. Consejería de Medio Ambiente. (in Spanish). http://www.juntadeandalucia.es/mediambiente/servtc5/ventana/informeFichaEspacioNatural.do

  • REWE Group (2009) Fallstudie “Best Alianz” früherdbeeren der Rewe group. Dokumentation. Fallstudie im rahmen des PCF (Product Carbon Footprint) Pilotprojekts Deutschland

  • Romero-Gámez M, Audsley E, Suárez-Rey EM (2014) Life cycle assessment of cultivating lettuce and escarole in Spain. J Clean Prod 73:193–203. https://doi.org/10.1016/j.jclepro.2013.10.053

    Article  CAS  Google Scholar 

  • Romero-Gámez M, Antón A, Leyva R, Suárez-Rey EM (2017) Inclusion of uncertainty in the LCA comparison of different cherry tomato production scenarios. Int J Life Cycle Assess 22(5):798–811. https://doi.org/10.1007/s11367-016-1225-3

    Article  Google Scholar 

  • Rysin O, McWhirt A, Fernández G, Lows FJ, Schroeder-Moreno M (2015) Economic viability and environmental impact assessment of three different strawberry production systems in the southeastern United States. Horttechnology 25(4):585–594

    Article  CAS  Google Scholar 

  • Schäfer F (2014) Carbon footprint ausgesuchter gartenbaulicher kulturen im rahmen eines pilotprojektes zur neuen PAS 2050-1-Bewertung der treibhausgasemissionen entlang der Wertschöpfungskette (Doctoral, Rheinische Friedrich-Wilhelms-Universität)

  • Soode E, Lampert P, Weber-Blaschke G, Richter K (2015) Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. J Clean Prod 87:168–179. https://doi.org/10.1016/j.jclepro.2014.09.035

    Article  Google Scholar 

  • Soode-Schimonsky E, Richter K, Weber-Blaschke G (2017) Product environment footprint of strawberries: case studies in Estonia and Germany. J Environ Manag 203:564–577. https://doi.org/10.1016/j.jenvman.2017.03.090

    Article  Google Scholar 

  • Tabatabaie SMH, Murthy GS (2016) Cradle to farm gate life cycle assessment of strawberry production in the United States. J Clean Prod 127:548–554. https://doi.org/10.1016/j.jclepro.2016.03.175

    Article  Google Scholar 

  • Torrellas M, Antón A, López JC, Baeza EJ, Pérez-Parra J, Muñoz P, Montero JI (2012) LCA of a tomato crop in a multi-tunnel greenhouse in Almería. Int J Life Cycle Assess 17(7):863–875. https://doi.org/10.1007/s11367-012-0409-8

    Article  CAS  Google Scholar 

  • Valiante D, Sirtori I, Cossa E, Corengia L, Pedretti M, Cavallaro L, Vignoli L, Galvagni A, Gomarasca S, Pesce GR, Boccardelli A, Orsi L, Lovarelli D, Facchinetti D, Pessina D, Bacenetti J (2019) Environmental impact of strawberry production in Italy and Switzerland with different cultivation practices. Sci Total Environ 664:249–261. https://doi.org/10.1016/j.scitotenv.2019.02.046

    Article  CAS  Google Scholar 

  • Williams A, Pell E, Webb J, Moorhouse E, Audsley E (2008) Strawberry and tomato production for the UK compared between the UK and Spain. In: Proceedings of the 6th International Conference on LCA in the Agri-food Sector, 254-262

  • Yoshikawa N, Amano K, Shimada K (2008) Evaluation of environmental load on fruits and vegetables consumption and its reduction potential. Environ Syst Res 35:499–509

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Luis Miranda Enamorado and the staff of the companies Adesva, Flor de Doñana Biorganic, and Benítez-Padilla S.L. for their assistance with the development of the LCI.

Funding

This research was funded with the project EI.AVA.AVA201601.10 and co-financed by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Romero-Gámez.

Additional information

Editorial Responsibility: Thomas Jan Nemecek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Gámez, M., Suárez-Rey, E.M. Environmental footprint of cultivating strawberry in Spain. Int J Life Cycle Assess 25, 719–732 (2020). https://doi.org/10.1007/s11367-020-01740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-020-01740-w

Keywords

Navigation