Skip to main content

Advertisement

Log in

Emerging energy and environmental application of graphene and their composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene-based materials receive attention in the field of energy and environmental application. The unique physiochemical assets such as the high surface area, high thermal stability, chemical flexibility, high electron mobility and mechanical solidity make it a highly versatile material for different applications. In this critical review, the application of graphene-based material in energy and environmental remediation is discussed in detail. More specifically, the role of graphene in thought-provoking research fields, viz. solar cell, photocatalytic water splitting, photocatalytic degradation of organic pollutants and heavy metal removal, is focused. As graphene possesses very good carrier mobility, it enhances the photocatalytic performance of semiconducting materials. Very interestingly, graphene is being used in both hole transport layer and electron transport layer in solar cell. Similarly, high surface area of graphene assists in heavy metal removal by adsorption. The challenges and recent achievements in these fields are highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Reproduced with permission from reference [73]

Figure 2

Reproduced with permission from references [82, 83]

Figure 3

Reproduced with permission from reference [88]

Figure 4

Reproduced with permission from reference [91]

Figure 5

Reproduced with permission from reference [72]

Figure 6

Reproduced with permission from reference [123]

Figure 7

Reproduced with permission from reference [124]

Figure 8

Reproduced with permission from reference [125]

Figure 9

Reproduced with permission from reference [126]

Figure 10

Reproduced with permission from reference [130]

Figure 11

Reproduced with permission from reference [168]

Figure 12

Reproduced with permission from reference [169]

Figure 13

Reproduced with permission from reference [170]

Figure 14
Figure 15

Reproduced with permission from reference [207]

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Lam E, Luong JHT (2014) Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals. ACS Catal 4:3393–3410. https://doi.org/10.1021/cs5008393

    Article  CAS  Google Scholar 

  2. Zeng Z, Yi L, He J et al (2020) Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions. J Mater Sci 55:4780–4791https://doi.org/10.1007/s10853-019-04327-5

    Article  CAS  Google Scholar 

  3. Zeng J, Mu Y, Ji X et al (2019) N, O-codoped 3D graphene fibers with densely arranged sharp edges as highly efficient electrocatalyst for oxygen reduction reaction. J Mater Sci 54:14495–14503. https://doi.org/10.1007/s10853-019-03743-x

    Article  CAS  Google Scholar 

  4. Serp P, Figueiredo JL (2009) Carbon materials for catalysis. Wiley, Hoboken. https://doi.org/10.1002/9780470403709

    Book  Google Scholar 

  5. Gopiraman M, Ganesh Babu S, Khatri Z et al (2013) An efficient, reusable copper-oxide/carbon-nanotube catalyst for N-arylation of imidazole. Carbon 62:135–148. https://doi.org/10.1016/j.carbon.2013.06.005

    Article  CAS  Google Scholar 

  6. Gopiraman M, Babu SG, Karvembu R, Kim IS (2014) Nanostructured RuO2 on MWCNTs: Efficient catalyst for transfer hydrogenation of carbonyl compounds and aerial oxidation of alcohols. Appl Catal A Gen 484:84–96. https://doi.org/10.1016/j.apcata.2014.06.032

    Article  CAS  Google Scholar 

  7. Skoda D, Kazda T, Munster L et al (2019) Microwave-assisted synthesis of a manganese metal–organic framework and its transformation to porous MnO/carbon nanocomposite utilized as a shuttle suppressing layer in lithium–sulfur batteries. J Mater Sci 54:14102–14122. https://doi.org/10.1007/s10853-019-03871-4

    Article  CAS  Google Scholar 

  8. Patra N, Cernik M, Salerno M (2016) Advances in electrospun nanofibers. J Nanomater 2016:1–2. https://doi.org/10.1155/2016/3531725

    Article  CAS  Google Scholar 

  9. Moreno-Fernandez G, Ibañez J, Rojo JM, Kunowsky M (2017) Activated carbon fiber monoliths as supercapacitor electrodes. Adv Mater Sci Eng 2017:1–8. https://doi.org/10.1155/2017/3625414

    Article  CAS  Google Scholar 

  10. Dhanasekar M, Jenefer V, Nambiar RB et al (2018) Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater Res Bull 97:238–243. https://doi.org/10.1016/j.materresbull.2017.08.056

    Article  CAS  Google Scholar 

  11. Gopiraman M, Babu SG, Khatri Z et al (2013) Facile and homogeneous decoration of RuO2 nanorods on graphene nanoplatelets for transfer hydrogenation of carbonyl compounds. Catal Sci Technol 3:1485–1489. https://doi.org/10.1039/C3CY20735H

    Article  CAS  Google Scholar 

  12. Gopiraman M, Ganesh Babu S, Khatri Z et al (2013) Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones. J Phys Chem C 117:23582–23596. https://doi.org/10.1021/jp402978q

    Article  CAS  Google Scholar 

  13. Carreño NL et al (2017) Metal-carbon interactions on reduced graphene oxide under facile thermal treatment: microbiological and cell assay. J Nanomater 2017:1–10. https://doi.org/10.1155/2017/6059540

    Article  CAS  Google Scholar 

  14. Gopiraman M, Bang H, Babu SG, Wei K, Karvembu R, Kim IS (2014) Catalytic N-oxidation of tertiary amines on RuO2NPs anchored graphene nanoplatelets. Catal Sci Technol 4:2099–2106. https://doi.org/10.1039/C3CY00963G

    Article  CAS  Google Scholar 

  15. Vinoth R, Babu SG, Bahnemann D, Neppolian B (2015) Nitrogen doped reduced graphene oxide hybrid metal free catalyst for effective reduction of 4-nitrophenol. Sci Adv Mater 7:1443–1449. https://doi.org/10.1166/sam.2015.2181

    Article  CAS  Google Scholar 

  16. Wu Y, Mu H, Cao X, He X (2020) Polymer-supported graphene–TiO 2 doped with nonmetallic elements with enhanced photocatalytic reaction under visible light. J Mater Sci 55:1577–1591. https://doi.org/10.1007/s10853-019-04100-8

    Article  CAS  Google Scholar 

  17. Vuong Hoan NT, Anh Thu NT, Duc HV, Cuong ND, Quang Khieu D, Vo V (2016) Fe3O4/reduced graphene oxide nanocomposite: synthesis and its application for toxic metal ion removal. J Chem 2016:1–10. https://doi.org/10.1155/2016/2418172

    Article  CAS  Google Scholar 

  18. Yi G, Xing B, Zeng H et al (2017) One-step synthesis of hierarchical micro-mesoporous sio2/reduced graphene oxide nanocomposites for adsorption of aqueous Cr(VI). J Nanomater 2017:1–10. https://doi.org/10.1155/2017/6286549

    Article  CAS  Google Scholar 

  19. Gopiraman M, Babu SG, Khatri Z et al (2015) Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use as a catalyst in the aerial oxidation of primary alcohols (GNS = graphene nanosheets). React Kinet Mech Catal 115:759–772. https://doi.org/10.1007/s11144-015-0861-0

    Article  CAS  Google Scholar 

  20. Babu SG, Vijayan AS, Neppolian B, Ashokkumar M (2015) SnS2/rGO: an efficient photocatalyst for the complete degradation of organic contaminants. Mater Focus 4:272–276. https://doi.org/10.1166/mat.2015.1247

    Article  CAS  Google Scholar 

  21. Dhand V, Rhee KY, Ju Kim H, Ho Jung D (2013) A comprehensive review of graphene nanocomposites: research status and trends. J Nanomater 2013:1–14. https://doi.org/10.1155/2013/763953

    Article  CAS  Google Scholar 

  22. Gopiraman M, Deng D, Ganesh Babu S, Hayashi T, Karvembu R, Kim IS (2015) Sustainable and versatile CuO/GNS nanocatalyst for highly efficient base free coupling reactions. ACS Sustain Chem Eng 3:2478–2488. https://doi.org/10.1021/acssuschemeng.5b00542

    Article  CAS  Google Scholar 

  23. Ramaswamy N, Mukerjee S (2012) Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media. Adv Phys Chem 2012:1–17. https://doi.org/10.1155/2012/491604

    Article  CAS  Google Scholar 

  24. Babu SG, Vinoth R, Narayana PS, Bahnemann D, Neppolian B (2015) Reduced graphene oxide wrapped Cu2O supported on C3N4: an efficient visible light responsive semiconductor photocatalyst. APL Mater 3:104415. https://doi.org/10.1063/1.4928286

    Article  CAS  Google Scholar 

  25. Babu SG, Gopiraman M, Deng D, Wei K, Karvembu R, Kim IS (2016) Robust Au–Ag/graphene bimetallic nanocatalyst for multifunctional activity with high synergism. Chem Eng J 300:146–159. https://doi.org/10.1016/j.cej.2016.04.101

    Article  CAS  Google Scholar 

  26. Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527. https://doi.org/10.1021/jz900265j

    Article  CAS  Google Scholar 

  27. Ji X, Zhang X, Zhang X (2015) Three-dimensional graphene-based nanomaterials as electrocatalysts for oxygen reduction reaction. J Nanomater 2015:1–9. https://doi.org/10.1155/2015/357196

    Article  CAS  Google Scholar 

  28. Long Y, Zhang C, Wang X, Gao J, Wang W, Liu Y (2011) Oxidation of SO2 to SO3 catalyzed by graphene oxide foams. J Mater Chem 21:13934–13941. https://doi.org/10.1039/C1JM12031J

    Article  CAS  Google Scholar 

  29. Hass J, Heer WAD, Conrad EH (2008) The growth and morphology of epitaxial multilayer graphene. J Phys Condens Matter 20:323202

    Article  Google Scholar 

  30. Su DS, Maksimova N, Delgado JJ et al (2005) Nanocarbons in selective oxidative dehydrogenation reaction. Catal Today 102:103–110. https://doi.org/10.1016/j.cattod.2005.02.012

    Article  CAS  Google Scholar 

  31. Mestl G, Maksimova NI, Keller N, Roddatis VV, Schlögl R (2001) Carbon nanofilaments in heterogeneous catalysis: an industrial application for new carbon materials? Angew Chem Int Ed 40:2066–2068. https://doi.org/10.1002/1521-3773(20010601)40:11%3c2066:AID-ANIE2066%3e3.0.CO;2-I

    Article  CAS  Google Scholar 

  32. Keller N, Maksimova NI, Roddatis VV et al (2002) The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Angew Chem Int Ed 41:1885–1888. https://doi.org/10.1002/1521-3773(20020603)41:11%3c1885:AID-ANIE1885%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  33. Wang C, Liu W, Wei S, Su D, Qi W (2019) Oxidative dehydrogenation on nanocarbon: revealing the reaction mechanism via in situ experimental strategies. ChemCatChem 11:397–400

    Article  Google Scholar 

  34. Qi W, Su D (2014) Metal-free carbon catalysts for oxidative dehydrogenation reactions. Acs Catal 4:3212–3218

    Article  CAS  Google Scholar 

  35. Pereira MFR, Figueiredo JL, Órfão JJM, Serp P, Kalck P, Kihn Y (2004) Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon 42:2807–2813. https://doi.org/10.1016/j.carbon.2004.06.025

    Article  CAS  Google Scholar 

  36. Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916. https://doi.org/10.1021/jp040650f

    Article  CAS  Google Scholar 

  37. Marforio TD, Bottoni A, Zerbetto F, Calvaresi M (2019) CNT-catalyzed oxidative dehydrogenation of ethylbenzene to styrene: DFT calculations disclose the pathways. ChemNanoMat 5:499–505

    Article  CAS  Google Scholar 

  38. Walt ADH, Claire B (2012) Epitaxial graphene. J Phys D Appl Phys 45:150301

    Article  Google Scholar 

  39. Liu J, Niu Y, He X, Qi J, Li X (2016) Photocatalytic reduction of CO2 using TiO2-graphene nanocomposites. J Nanomater 2016:1–5. https://doi.org/10.1155/2016/6012896

    Article  CAS  Google Scholar 

  40. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036

    Article  CAS  Google Scholar 

  41. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672. https://doi.org/10.1039/C0CS00079E

    Article  CAS  Google Scholar 

  42. Srivastava A, Galande C, Ci L et al (2010) Novel liquid precursor-based facile synthesis of large-area continuous, single, and few-layer graphene films. Chem Mater 22:3457–3461. https://doi.org/10.1021/cm101027c

    Article  CAS  Google Scholar 

  43. Li X, Cai W, An J et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314. https://doi.org/10.1126/science.1171245

    Article  CAS  Google Scholar 

  44. Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411. https://doi.org/10.1038/nmat2166

    Article  CAS  Google Scholar 

  45. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  46. Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. https://doi.org/10.1021/nl801827v

    Article  CAS  Google Scholar 

  47. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  48. Peng C, Hu W, Zhou Y, Fan C, Huang Q (2010) Intracellular imaging with a graphene-based fluorescent probe. Small 6:1686–1692. https://doi.org/10.1002/smll.201000560

    Article  CAS  Google Scholar 

  49. Wu J, Pisula W, Müllen K (2007) Graphenes as potential material for electronics. Chem Rev 107:718–747. https://doi.org/10.1021/cr068010r

    Article  CAS  Google Scholar 

  50. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995. https://doi.org/10.1021/jp900360k

    Article  CAS  Google Scholar 

  51. Dadvar E, Kalantary RR, Ahmad Panahi H, Peyravi M (2017) Efficiency of polymeric membrane graphene oxide-TiO2 for removal of azo dye. J Chem 2017:1–13. https://doi.org/10.1155/2017/6217987

    Article  CAS  Google Scholar 

  52. McAllister MJ, Li J-L, Adamson DH et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404. https://doi.org/10.1021/cm0630800

    Article  CAS  Google Scholar 

  53. Zhang N, Qiu H, Liu Y et al (2011) Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J Mater Chem 21:11080–11083. https://doi.org/10.1039/C1JM12539G

    Article  CAS  Google Scholar 

  54. Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photon 6:153–161. https://doi.org/10.1038/nphoton.2012.11

    Article  CAS  Google Scholar 

  55. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. https://doi.org/10.1021/cr050149z

    Article  CAS  Google Scholar 

  56. van Hal P, Wienk M, Kroon J et al (2003) Photoinduced electron transfer and photovoltaic response of a MDMO-PPV:TiO2 bulk-heterojunction. Adv Mater 15:118–121. https://doi.org/10.1002/adma.200390022

    Article  Google Scholar 

  57. Xiao Z, Duan T, Chen H, Sun K, Lu S (2018) The role of hydrogen bonding in bulk-heterojunction (BHJ) solar cells: a review. Sol Energy Mater Sol Cells 182:1–13

    Article  CAS  Google Scholar 

  58. Peet J, Kim JY, Coates NE et al (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500. https://doi.org/10.1038/nmat1928

    Article  CAS  Google Scholar 

  59. Ma T, Jiang K, Chen S et al (2015) Efficient low-bandgap polymer solar cells with high open-circuit voltage and good stability. Adv Energy Mater 5:1501282. https://doi.org/10.1002/aenm.201501282

    Article  CAS  Google Scholar 

  60. Wang J-Y, Hau SK, Yip H-L et al (2011) Benzobis(silolothiophene)-based low bandgap polymers for efficient polymer solar cells. Chem Mater 23:765–767. https://doi.org/10.1021/cm1020228

    Article  CAS  Google Scholar 

  61. Lipomi DJ, Chong H, Vosgueritchian M, Mei J, Bao Z (2012) Toward mechanically robust and intrinsically stretchable organic solar cells: evolution of photovoltaic properties with tensile strain. Sol Energy Mater Sol Cells 107:355–365. https://doi.org/10.1016/j.solmat.2012.07.013

    Article  CAS  Google Scholar 

  62. Savagatrup S, Printz AD, O'Connor TF et al (2015) Mechanical degradation and stability of organic solar cells: molecular and microstructural determinants. Energ Environ Sci 8:55–80. https://doi.org/10.1039/C4EE02657H

    Article  CAS  Google Scholar 

  63. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  Google Scholar 

  64. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024. https://doi.org/10.1038/nchem.907

    Article  CAS  Google Scholar 

  65. Chen L, Zhang M, Wei W (2013) Graphene-based composites as cathode materials for lithium ion batteries. J Nanomater 2013:1–8. https://doi.org/10.1155/2013/940389

    Article  CAS  Google Scholar 

  66. Liu B, Wang Y, Jiang H-W, Zou B-X (2017) WO3 nanowires on graphene sheets as negative electrode for supercapacitors. J Nanomater 2017:1–9. https://doi.org/10.1155/2017/2494109

    Article  CAS  Google Scholar 

  67. Mahmood N, Zhang C, Yin H, Hou Y (2014) Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J Mater Chem A 2:15–32. https://doi.org/10.1039/C3TA13033A

    Article  CAS  Google Scholar 

  68. Abdullah MF, Hashim AM (2019) Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells. J Mater Sci 54:911–948. https://doi.org/10.1007/s10853-018-2947-3

    Article  CAS  Google Scholar 

  69. Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251. https://doi.org/10.1021/jz101639v

    Article  CAS  Google Scholar 

  70. Lightcap IV, Kamat PV (2013) Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing. Acc Chem Res 46:2235–2243. https://doi.org/10.1021/ar300248f

    Article  CAS  Google Scholar 

  71. Liu J, Durstock M, Dai L (2014) Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells. Energ Environ Sci 7:1297–1306. https://doi.org/10.1039/C3EE42963F

    Article  CAS  Google Scholar 

  72. Vinoth R, Babu SG, Bharti V et al (2017) Ruthenium based metallopolymer grafted reduced graphene oxide as a new hybrid solar light harvester in polymer solar cells. Sci Rep 7:1–14. https://doi.org/10.1038/srep43133

    Article  CAS  Google Scholar 

  73. Li S-S, Tu K-H, Lin C-C, Chen C-W, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174. https://doi.org/10.1021/nn100551j

    Article  CAS  Google Scholar 

  74. Gao Y, Yip H-L, Hau SK et al (2010) Anode modification of inverted polymer solar cells using graphene oxide. Appl Phys Lett 97:203306. https://doi.org/10.1063/1.3507388

    Article  CAS  Google Scholar 

  75. Liu J, Xue Y, Dai L (2012) Sulfated graphene oxide as a hole-extraction layer in high-performance polymer solar cells. J Phys Chem Lett 3:1928–1933. https://doi.org/10.1021/jz300723h

    Article  CAS  Google Scholar 

  76. Yun JM, Yeo JS, Kim J et al (2011) Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells. Adv Mater 23:4923–4928. https://doi.org/10.1002/adma.201102207

    Article  CAS  Google Scholar 

  77. Jeon Y-J, Yun J-M, Kim D-Y, Na S-I, Kim S-S (2012) High-performance polymer solar cells with moderately reduced graphene oxide as an efficient hole transporting layer. Sol Energy Mater Sol Cells 105:96–102. https://doi.org/10.1016/j.solmat.2012.05.024

    Article  CAS  Google Scholar 

  78. Liu J, Kim GH, Xue Y et al (2014) Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells. Adv Mater 26:786–790. https://doi.org/10.1002/adma.201302987

    Article  CAS  Google Scholar 

  79. Chen S, Yu X, Zhang M et al (2015) A graphene oxide/oxygen deficient molybdenum oxide nanosheet bilayer as a hole transport layer for efficient polymer solar cells. J Mater Chem A 3:18380–18383. https://doi.org/10.1039/C5TA04823K

    Article  CAS  Google Scholar 

  80. Oh SH, Kim KR, Yun JM, Kang PH (2015) Graphene oxide and water-soluble polymer composite materials as efficient hole transporting layer for high performance organic solar cells. Physica status solidi (a) 212:376–381. https://doi.org/10.1002/pssa.201431595

    Article  CAS  Google Scholar 

  81. Kwon S-N, Jung C-H, Na S-I (2016) Electron-beam-induced reduced graphene oxide as an alternative hole-transporting interfacial layer for high-performance and reliable polymer solar cells. Org Electron 34:67–74. https://doi.org/10.1016/j.orgel.2016.04.008

    Article  CAS  Google Scholar 

  82. Rafique S, Abdullah SM, Shahid MM, Ansari MO, Sulaiman K (2017) Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide /PEDOT:PSS double decked hole transport layer. Sci Rep 7:39555. https://doi.org/10.1038/srep39555

    Article  CAS  Google Scholar 

  83. Cheng X, Long J, Wu R et al (2017) Fluorinated reduced graphene oxide as an efficient hole-transport layer for efficient and stable polymer solar cells. ACS Omega 2:2010–2016. https://doi.org/10.1021/acsomega.7b00408

    Article  CAS  Google Scholar 

  84. Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24:2228–2233. https://doi.org/10.1002/adma.201104945

    Article  CAS  Google Scholar 

  85. Qu S, Li M, Xie L et al (2013) Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 7:4070–4081. https://doi.org/10.1021/nn4001963

    Article  CAS  Google Scholar 

  86. Yang HB, Dong YQ, Wang X, Khoo SY, Liu B (2014) Cesium carbonate functionalized graphene quantum dots as stable electron-selective layer for improvement of inverted polymer solar cells. ACS Appl Mater Interfaces 6:1092–1099. https://doi.org/10.1021/am404638e

    Article  CAS  Google Scholar 

  87. Moon BJ, Lee KS, Shim J et al (2016) Enhanced photovoltaic performance of inverted polymer solar cells utilizing versatile chemically functionalized ZnO@graphene quantum dot monolayer. Nano Energy 20:221–232. https://doi.org/10.1016/j.nanoen.2015.11.039

    Article  CAS  Google Scholar 

  88. Ding Z, Miao Z, Xie Z, Liu J (2016) Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. J Mater Chem A 4:2413–2418. https://doi.org/10.1039/C5TA10102F

    Article  CAS  Google Scholar 

  89. Liu Z, Liu Q, Huang Y et al (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20:3924–3930. https://doi.org/10.1002/adma.200800366

    Article  CAS  Google Scholar 

  90. Liu Q, Liu Z, Zhang X et al (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894–904. https://doi.org/10.1002/adfm.200800954

    Article  CAS  Google Scholar 

  91. Yu D, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer−heterojunction photovoltaic devices. ACS Nano 4:5633–5640. https://doi.org/10.1021/nn101671t

    Article  CAS  Google Scholar 

  92. Yu D, Park K, Durstock M, Dai L (2011) Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices. J Phys Chem Lett 2:1113–1118. https://doi.org/10.1021/jz200428y

    Article  CAS  Google Scholar 

  93. Li Y, Hu Y, Zhao Y et al (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780. https://doi.org/10.1002/adma.201003819

    Article  CAS  Google Scholar 

  94. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963. https://doi.org/10.1021/ja2036749

    Article  CAS  Google Scholar 

  95. Li F, Kou L, Chen W, Wu C, Guo T (2013) Enhancing the short-circuit current and power conversion efficiency of polymer solar cells with graphene quantum dots derived from double-walled carbon nanotubes. NPG Asia Mater 5:e60. https://doi.org/10.1038/am.2013.38

    Article  CAS  Google Scholar 

  96. He M, Jung J, Qiu F, Lin Z (2012) Graphene-based transparent flexible electrodes for polymer solar cells. J Mater Chem 22:24254–24264. https://doi.org/10.1039/C2JM33784C

    Article  CAS  Google Scholar 

  97. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873. https://doi.org/10.1021/nn901587x

    Article  CAS  Google Scholar 

  98. Lee Y-Y, Tu K-H, Yu C-C et al (2011) Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5:6564–6570. https://doi.org/10.1021/nn201940j

    Article  CAS  Google Scholar 

  99. Park H, Chang S, Zhou X, Kong J, Palacios T, Gradečak S (2014) Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett 14:5148–5154. https://doi.org/10.1021/nl501981f

    Article  CAS  Google Scholar 

  100. Zhang X, Wu J, Liu H, Wang J, Zhao X, Xie Z (2017) Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide–Assisted silver nanowire transparent electrode. Org Electron 50:255–263. https://doi.org/10.1016/j.orgel.2017.07.055

    Article  CAS  Google Scholar 

  101. Yoon TP, Ischay MA, Du J (2010) Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2:527–532. https://doi.org/10.1038/nchem.687

    Article  CAS  Google Scholar 

  102. Morton O (2006) A new day dawning?: silicon valley sunrise. Nature 443:19–22. https://doi.org/10.1038/443019a

    Article  CAS  Google Scholar 

  103. Lewis NS (2007) Toward cost-effective solar energy use. Science 315:798–801. https://doi.org/10.1126/science.1137014

    Article  CAS  Google Scholar 

  104. Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energ Environ Sci 9:357–390. https://doi.org/10.1039/C5EE02474A

    Article  CAS  Google Scholar 

  105. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  106. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  107. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75. https://doi.org/10.1039/C1CY00361E

    Article  CAS  Google Scholar 

  108. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183. https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  109. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699. https://doi.org/10.1039/C2CC00110A

    Article  CAS  Google Scholar 

  110. Zhu S, Wang J, Fan W (2015) Graphene-based catalysis for biomass conversion. Catal Sci Technol 5:3845–3858. https://doi.org/10.1039/C5CY00339C

    Article  CAS  Google Scholar 

  111. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed 52:3110–3116. https://doi.org/10.1002/anie.201209548

    Article  CAS  Google Scholar 

  112. Araújo MP, Nunes M, Rocha IM, Pereira M, Freire C (2019) Electrocatalytic activity of new Mn 3 O 4@ oxidized graphene flakes nanocomposites toward oxygen reduction reaction. J Mater Sci 54:8919–8940. https://doi.org/10.1007/s10853-019-03508-6

    Article  CAS  Google Scholar 

  113. Deng ZH, Li L, Ding W, Xiong K, Wei ZD (2015) Synthesized ultrathin MoS2 nanosheets perpendicular to graphene for catalysis of hydrogen evolution reaction. Chem Commun 51:1893–1896. https://doi.org/10.1039/C4CC08491H

    Article  CAS  Google Scholar 

  114. Deng J, Ren P, Deng D, Bao X (2015) Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed 54:2100–2104. https://doi.org/10.1002/anie.201409524

    Article  CAS  Google Scholar 

  115. Jiang J, Zhu L, Chen H et al (2019) Highly active and stable electrocatalysts of FeS 2–reduced graphene oxide for hydrogen evolution. J Mater Sci 54:1422–1433. https://doi.org/10.1007/s10853-018-2913-0

    Article  CAS  Google Scholar 

  116. Kong X-K, Chen C-L, Chen Q-W (2014) Doped graphene for metal-free catalysis. Chem Soc Rev 43:2841–2857. https://doi.org/10.1039/C3CS60401B

    Article  CAS  Google Scholar 

  117. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  118. Moniz SJA, Shevlin SA, Martin DJ, Guo Z-X, Tang J (2015) Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energ Environ Sci 8:731–759. https://doi.org/10.1039/C4EE03271C

    Article  CAS  Google Scholar 

  119. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278. https://doi.org/10.1039/B800489G

    Article  CAS  Google Scholar 

  120. Ahmad H, Kamarudin SK, Minggu LJ, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sust Energ Rev 43:599–610. https://doi.org/10.1016/j.rser.2014.10.101

    Article  CAS  Google Scholar 

  121. Ismail AA, Bahnemann DW (2014) Photochemical splitting of water for hydrogen production by photocatalysis: a review. Sol Energy Mater Sol Cells 128:85–101. https://doi.org/10.1016/j.solmat.2014.04.037

    Article  CAS  Google Scholar 

  122. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: History and recent developments. J Photochem Photobio C Photochem Rev 12:237–268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001

    Article  CAS  Google Scholar 

  123. Li Q, Guo B, Yu J et al (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884. https://doi.org/10.1021/ja2025454

    Article  CAS  Google Scholar 

  124. Mukherji A, Seger B, Lu GQ, Wang L (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5:3483–3492. https://doi.org/10.1021/nn102469e

    Article  CAS  Google Scholar 

  125. Babu SG, Vinoth R, Praveen Kumar D et al (2015) Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. Nanoscale 7:7849–7857. https://doi.org/10.1039/C5NR00504C

    Article  CAS  Google Scholar 

  126. Xiang Q, Yu J, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J Phys Chem C 115:7355–7363. https://doi.org/10.1021/jp200953k

    Article  CAS  Google Scholar 

  127. Yu J, Qi L, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125. https://doi.org/10.1021/jp104488b

    Article  CAS  Google Scholar 

  128. Yu J, Dai G, Huang B (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C 113:16394–16401. https://doi.org/10.1021/jp905247j

    Article  CAS  Google Scholar 

  129. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. https://doi.org/10.1021/nn800251f

    Article  CAS  Google Scholar 

  130. Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701. https://doi.org/10.1021/jp2008804

    Article  CAS  Google Scholar 

  131. Nada AA, Barakat MH, Hamed HA, Mohamed NR, Veziroglu TN (2005) Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. Int J Hydrogen Energy 30:687–691. https://doi.org/10.1016/j.ijhydene.2004.06.007

    Article  CAS  Google Scholar 

  132. Marchal C, Cottineau T, Méndez-Medrano MG, Colbeau-Justin C, Caps V, Keller V (2018) Au/TiO2–gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv Energ Mater 8:1702142

    Article  Google Scholar 

  133. Camacho SYT, Rey A, Hernández-Alonso MD, Llorca J, Medina F, Contreras S (2018) Pd/TiO2-WO3 photocatalysts for hydrogen generation from water-methanol mixtures. Appl Surf Sci 455:570–580

    Article  Google Scholar 

  134. Li N, Liu G, Zhen C, Li F, Zhang L, Cheng HM (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21:1717–1722. https://doi.org/10.1002/adfm.201002295

    Article  CAS  Google Scholar 

  135. Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421. https://doi.org/10.1039/C0JM03542D

    Article  CAS  Google Scholar 

  136. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806. https://doi.org/10.1039/B917240H

    Article  CAS  Google Scholar 

  137. Jia L, Wang D-H, Huang Y-X, Xu A-W, Yu H-Q (2011) Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J Phys Chem C 115:11466–11473. https://doi.org/10.1021/jp2023617

    Article  CAS  Google Scholar 

  138. Wu CW, Hung WZ (2015) Real national income average growth rate: a novel economic growth and social fair evaluation index. Economics Res Int 2015:1–7. https://doi.org/10.1155/2015/678927

    Article  CAS  Google Scholar 

  139. Hu C-C, Teng H (2007) Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods. Appl Catal A Gen 331:44–50. https://doi.org/10.1016/j.apcata.2007.07.024

    Article  CAS  Google Scholar 

  140. Sur UK (2012) Graphene: a rising star on the horizon of materials science. Int J Electrochem 2012:1–12. https://doi.org/10.1155/2012/237689

    Article  CAS  Google Scholar 

  141. Latha P, Dhanabackialakshmi R, Kumar PS, Karuthapandian S (2016) Synergistic effects of trouble free and 100% recoverable CeO2/Nylon nanocomposite thin film for the photocatalytic degradation of organic contaminants. Sep Purif Technol 168:124–133. https://doi.org/10.1016/j.seppur.2016.05.038

    Article  CAS  Google Scholar 

  142. Zhang Z, Wang X, Long J et al (2008) Pt/ coupled with water-splitting catalyst for organic pollutant photodegradation: insight into the primary reaction mechanism. Res Lett Phys Chem 2008:5. https://doi.org/10.1155/2008/810457

    Article  CAS  Google Scholar 

  143. Kumar PS, Karuthapandian S, Umadevi M, Elangovan A, Muthuraj V (2016) Light induced synthesis of Sr/CdSe nanocomposite for the highly synergistic photodegradation of methylene blue dye solution. Mater Focus 5:128–136. https://doi.org/10.1166/mat.2016.1301

    Article  CAS  Google Scholar 

  144. Karthik P, Vinoth R, Babu SG et al (2015) Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(vi) reduction. RSC Adv 5:39752–39759. https://doi.org/10.1039/C5RA03831F

    Article  CAS  Google Scholar 

  145. Luo X, Yang J (2017) Water pollution detection based on hypothesis testing in sensor networks. J Sensors 2017:1–8. https://doi.org/10.1155/2017/3829894

    Article  CAS  Google Scholar 

  146. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Technol 3:491–495. https://doi.org/10.1038/nnano.2008.199

    Article  CAS  Google Scholar 

  147. An X, Yu JC (2011) Graphene-based photocatalytic composites. RSC Adv 1:1426–1434. https://doi.org/10.1039/C1RA00382H

    Article  CAS  Google Scholar 

  148. Zhao R, Sun X, Jin Y, Han J, Wang L, Liu F (2019) Au/Pd/gC 3 N 4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J Mater Sci 54:5445–5456. https://doi.org/10.1007/s10853-018-03278-7

    Article  CAS  Google Scholar 

  149. Wang G, Zhang W, Li J, Dong X, Zhang X (2019) Carbon quantum dots decorated BiVO 4 quantum tube with enhanced photocatalytic performance for efficient degradation of organic pollutants under visible and near-infrared light. J Mater Sci 54:6488–6499. https://doi.org/10.1007/s10853-019-03316-y

    Article  CAS  Google Scholar 

  150. Hu L, Zhang Y, Lu W, Lu Y, Hu H (2019) Easily recyclable photocatalyst Bi 2 WO 6/MOF/PVDF composite film for efficient degradation of aqueous refractory organic pollutants under visible-light irradiation. J Mater Sci 54:6238–6257. https://doi.org/10.1007/s10853-018-03302-w

    Article  CAS  Google Scholar 

  151. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. https://doi.org/10.1039/C1CS15172J

    Article  CAS  Google Scholar 

  152. Zhang N, Zhang Y, Xu Y-J (2012) Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4:5792–5813. https://doi.org/10.1039/C2NR31480K

    Article  CAS  Google Scholar 

  153. Han L, Wang P, Dong S (2012) Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale 4:5814–5825. https://doi.org/10.1039/C2NR31699D

    Article  CAS  Google Scholar 

  154. Dhakshinamoorthy A, Navalon S, Corma A, Garcia H (2012) Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energ Environ Sci 5:9217–9233. https://doi.org/10.1039/C2EE21948D

    Article  CAS  Google Scholar 

  155. Xu Y-F, Yang M-Z, Chen B-X et al (2017) A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J Am Chem Soc 139:5660–5663. https://doi.org/10.1021/jacs.7b00489

    Article  CAS  Google Scholar 

  156. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. https://doi.org/10.1021/nn901221k

    Article  CAS  Google Scholar 

  157. Wang M, Ju P, Li J, Zhao Y, Han X, Hao Z (2017) Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain Chem Eng 5:7878–7886. https://doi.org/10.1021/acssuschemeng.7b01386

    Article  CAS  Google Scholar 

  158. Bai Y-Y, Wang F-R, Liu J-K (2016) A new complementary catalyst and catalytic mechanism: Ag2MoO4/Ag/AgBr/GO heterostructure. Ind Eng Chem Res 55:9873–9879. https://doi.org/10.1021/acs.iecr.6b01265

    Article  CAS  Google Scholar 

  159. Luo G, Jiang X, Li M, Shen Q, Zhang L, Yu H (2013) Facile fabrication and enhanced photocatalytic performance of Ag/AgCl/rGO heterostructure photocatalyst. ACS Appl Mater Interfaces 5:2161–2168. https://doi.org/10.1021/am303225n

    Article  CAS  Google Scholar 

  160. Zhu M, Chen P, Liu M (2011) Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 5:4529–4536. https://doi.org/10.1021/nn200088x

    Article  CAS  Google Scholar 

  161. Liu Y, Yang D, Yu R et al (2017) Tetrahedral silver phosphate/graphene oxide hybrids as highly efficient visible light photocatalysts with excellent cyclic stability. J Phys Chem C 121:25172–25179. https://doi.org/10.1021/acs.jpcc.7b07848

    Article  CAS  Google Scholar 

  162. S Kumar, C Terashima, A Fujishima, V Krishnan, S Pitchaimuthu (2019) Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite. A New Generation Material Graphene: Applications in Water Technology. Springer, Berlin, pp. 413–438

    Google Scholar 

  163. Zheng Y, Yang Y, Zhang Y et al (2019) Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation. Biochar 1:89–96

    Article  Google Scholar 

  164. Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. https://doi.org/10.1126/science.1125925

    Article  CAS  Google Scholar 

  165. Ito J, Nakamura J, Natori A (2008) Semiconducting nature of the oxygen-adsorbed graphene sheet. J Appl Phys 103:113712. https://doi.org/10.1063/1.2939270

    Article  CAS  Google Scholar 

  166. Burghard M, Klauk H, Kern K (2009) Carbon-based field-effect transistors for nanoelectronics. Adv Mater 21:2586–2600. https://doi.org/10.1002/adma.200803582

    Article  CAS  Google Scholar 

  167. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345. https://doi.org/10.1039/C0JM02922J

    Article  CAS  Google Scholar 

  168. Babu SG, Ramalingam V, Neppolian B, Dionysiou DD, Ashokkumar M (2015) Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst. J Hazard Mater 291:83–89. https://doi.org/10.1016/j.jhazmat.2015.02.071

    Article  CAS  Google Scholar 

  169. Bhunia SK, Jana NR (2014) Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6:20085–20092. https://doi.org/10.1021/am505677x

    Article  CAS  Google Scholar 

  170. Lui G, Liao J-Y, Duan A, Zhang Z, Fowler M, Yu A (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1:12255–12262. https://doi.org/10.1039/C3TA12329D

    Article  CAS  Google Scholar 

  171. Malekshoar G, Pal K, He Q, Yu A, Ray AK (2014) Enhanced solar photocatalytic degradation of phenol with coupled graphene-based titanium dioxide and zinc oxide. Ind Eng Chem Res 53:18824–18832. https://doi.org/10.1021/ie501673v

    Article  CAS  Google Scholar 

  172. Jin L, Zhang G, Tian H (2014) Current state of sewage treatment in China. Water Res 66:85–98. https://doi.org/10.1016/j.watres.2014.08.014

    Article  CAS  Google Scholar 

  173. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  174. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  CAS  Google Scholar 

  175. Maleki A, Pajootan E, Hayati B (2015) Ethyl acrylate grafted chitosan for heavy metal removal from wastewater: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 51:127–134. https://doi.org/10.1016/j.jtice.2015.01.004

    Article  CAS  Google Scholar 

  176. Ebrahimi R, Maleki A, Shahmoradi B et al (2013) Elimination of arsenic contamination from water using chemically modified wheat straw. Desalin Water Treat 51:2306–2316. https://doi.org/10.1080/19443994.2012.734675

    Article  CAS  Google Scholar 

  177. Zhao L, Mitomo H (2008) Adsorption of heavy metal ions from aqueous solution onto chitosan entrapped CM-cellulose hydrogels synthesized by irradiation. J Appl Polym Sci 110:1388. https://doi.org/10.1002/app.28718

    Article  CAS  Google Scholar 

  178. Li Y, Zhou Q, Ren B et al (2019) Trends and health risks of dissolved heavy metal pollution in global river and lake water from 1970 to 2017. Rev Environ Contamination Toxicol 251:1–24

    Google Scholar 

  179. Saljnikov E, Mrvić V, Čakmak D et al (2019) Pollution indices and sources appointment of heavy metal pollution of agricultural soils near the thermal power plant. Environ Geochem Health 41:2265–2279

    Article  CAS  Google Scholar 

  180. Zhong W-S, Ren T, Zhao L-J (2016) Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J Food Drug Anal 24:46–55. https://doi.org/10.1016/j.jfda.2015.04.010

    Article  CAS  Google Scholar 

  181. Gao Z, Cao J, Yan J, Wang J, Cai S, Yan C (2017) Blood lead levels and risk factors among preschool children in a lead polluted area in Taizhou. China BioMed Res Int 2017:1–8. https://doi.org/10.1155/2017/4934198

    Article  CAS  Google Scholar 

  182. Jacob B, Ritz B, Heinrich J, Hoelscher B, Wichmann HE (2000) The effect of low-level blood lead on hematologic parameters in children. Environ Res 82:150–159. https://doi.org/10.1006/enrs.1999.4011

    Article  CAS  Google Scholar 

  183. Matés JM, Segura JA, Alonso FJ, Márquez J (2010) Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radical Biol Med 49:1328–1341. https://doi.org/10.1016/j.freeradbiomed.2010.07.028

    Article  CAS  Google Scholar 

  184. Cao C-Y, Qu J, Wei F, Liu H, Song W-G (2012) Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl Mater Interfaces 4:4283–4287. https://doi.org/10.1021/am300972z

    Article  CAS  Google Scholar 

  185. Qin J-J, Wai M-N, Oo M-H, Wong F-S (2002) A feasibility study on the treatment and recycling of a wastewater from metal plating. J Membr Sci 208:213–221. https://doi.org/10.1016/S0376-7388(02)00263-6

    Article  CAS  Google Scholar 

  186. Lin S-H, Juang R-S (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92:315–326. https://doi.org/10.1016/S0304-3894(02)00026-2

    Article  CAS  Google Scholar 

  187. Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44:19–41. https://doi.org/10.1016/j.bej.2008.12.009

    Article  CAS  Google Scholar 

  188. Qdais HA, Moussa H (2004) Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination 164:105–110. https://doi.org/10.1016/S0011-9164(04)00169-9

    Article  CAS  Google Scholar 

  189. Bashir A, Malik LA, Ahad S et al (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754

    Article  CAS  Google Scholar 

  190. Kyriakopoulos G, Doulia D (2006) Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review. Separation Purification Rev 35:97–191. https://doi.org/10.1080/15422110600822733

    Article  CAS  Google Scholar 

  191. Cantuaria ML, de Almeida Neto AF, Nascimento ES, Vieira MGA (2016) Adsorption of silver from aqueous solution onto pre-treated bentonite clay: complete batch system evaluation. J Clean Prod 112:1112–1121. https://doi.org/10.1016/j.jclepro.2015.07.021

    Article  CAS  Google Scholar 

  192. Ismaiel AA, Aroua MK, Yusoff R (2013) Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chem Eng J 225:306–314. https://doi.org/10.1016/j.cej.2013.03.082

    Article  CAS  Google Scholar 

  193. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56. https://doi.org/10.1016/j.cis.2013.12.005

    Article  CAS  Google Scholar 

  194. Cortés-Arriagada D, Toro-Labbé A (2016) Aluminum and iron doped graphene for adsorption of methylated arsenic pollutants. Appl Surf Sci 386:84–95. https://doi.org/10.1016/j.apsusc.2016.05.154

    Article  CAS  Google Scholar 

  195. Liu L, Li C, Bao C et al (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357. https://doi.org/10.1016/j.talanta.2012.02.051

    Article  CAS  Google Scholar 

  196. Huang Z-H, Zheng X, Lv W, Wang M, Yang Q-H, Kang F (2011) Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562

    Article  CAS  Google Scholar 

  197. Yang S-T, Chang Y, Wang H et al (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127. https://doi.org/10.1016/j.jcis.2010.07.042

    Article  CAS  Google Scholar 

  198. Wang H, Yuan X, Wu Y et al (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440. https://doi.org/10.1016/j.apsusc.2013.04.133

    Article  CAS  Google Scholar 

  199. Bian Y, Bian Z-Y, Zhang J-X, Ding A-Z, Liu S-L, Wang H (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329:269–275. https://doi.org/10.1016/j.apsusc.2014.12.090

    Article  CAS  Google Scholar 

  200. Gao W, Majumder M, Alemany LB et al (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3:1821–1826. https://doi.org/10.1021/am200300u

    Article  CAS  Google Scholar 

  201. Cao Y, Li X (2014) Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption 20:713–727. https://doi.org/10.1007/s10450-014-9615-y

    Article  CAS  Google Scholar 

  202. Song S, Wu K, Wu H, Guo J, Zhang L (2020) Synthesis of Z-scheme multi-shelled ZnO/AgVO 3 spheres as photocatalysts for the degradation of ciprofloxacin and reduction of chromium (VI). J Mater Sci 55:1–21. https://doi.org/10.1007/s10853-019-04316-8

    Article  CAS  Google Scholar 

  203. An S, Joshi BN, Lee J-G et al (2017) A comprehensive review on wettability, desalination, and purification using graphene-based materials at water interfaces. Catal Today 295:14–25. https://doi.org/10.1016/j.cattod.2017.04.027

    Article  CAS  Google Scholar 

  204. Chen Y, Xu H, Wang S, Kang L (2014) Removal of Cr(vi) from water using polypyrrole/attapulgite core-shell nanocomposites: equilibrium, thermodynamics and kinetics. RSC Adv 4:17805–17811. https://doi.org/10.1039/C3RA47351A

    Article  CAS  Google Scholar 

  205. Li Y, Gao B, Wu T et al (2009) Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide. Water Res 43:3067–3075. https://doi.org/10.1016/j.watres.2009.04.008

    Article  CAS  Google Scholar 

  206. Zhou L, Deng H, Wan J, Shi J, Su T (2013) A solvothermal method to produce RGO-Fe3O4 hybrid composite for fast chromium removal from aqueous solution. Appl Surf Sci 283:1024–1031. https://doi.org/10.1016/j.apsusc.2013.07.063

    Article  CAS  Google Scholar 

  207. Perreault F, Fonseca Faria de A, Elimelech M (2015) Environmental applications of graphene-based nanomaterials. Chem Soc Rev 44:5861–5896. https://doi.org/10.1039/C5CS00021A

    Article  CAS  Google Scholar 

  208. Lizama KA, Fletcher TD, Sun G (2011) Removal processes for arsenic in constructed wetlands. Chemosphere 84:1032–1043. https://doi.org/10.1016/j.chemosphere.2011.04.022

    Article  CAS  Google Scholar 

  209. Arabnezhad M, Afarani MS, Jafari A (2019) Co-precipitation synthesis of ZnO–TiO2 nanostructure composites for arsenic photodegradation from industrial wastewater. Inter J Environ Sci Technol 16:463–468

    Article  CAS  Google Scholar 

  210. Hosseini S, Abbasian A, Gholipoor O, Ranjan S, Dasgupta N (2019) Adsorptive removal of arsenic from real sample of polluted water using magnetic GO/ZnFe 2 O 4 nanocomposite and ZnFe 2 O 4 nanospinel. Inter J Environ Sci Technol 16:7455–7466

    Article  CAS  Google Scholar 

  211. Pourbeyram S, Alizadeh S, Gholizadeh S (2016) Simultaneous removal of arsenate and arsenite from aqueous solutions by graphene oxide-zirconium (GO-Zr) nanocomposite. J Environ Chem Eng 4:4366–4373. https://doi.org/10.1016/j.jece.2016.10.003

    Article  CAS  Google Scholar 

  212. Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182:162–168. https://doi.org/10.1016/j.jhazmat.2010.06.010

    Article  CAS  Google Scholar 

  213. Li X, Wang S, Liu Y et al (2017) Adsorption of Cu(II), Pb(II), and Cd(II) ions from acidic aqueous solutions by diethylenetriaminepentaacetic acid-modified magnetic graphene oxide. J Chem Eng Data 62:407–416. https://doi.org/10.1021/acs.jced.6b00746

    Article  CAS  Google Scholar 

  214. Hao L, Song H, Zhang L, Wan X, Tang Y, Lv Y (2012) SiO2/graphene composite for highly selective adsorption of Pb(II) ion. J Colloid Interface Sci 369:381. https://doi.org/10.1016/j.jcis.2011.12.023

    Article  CAS  Google Scholar 

  215. Gu D, Fein JB (2015) Adsorption of metals onto graphene oxide: Surface complexation modeling and linear free energy relationships. Colloids Surf A Physicochem Eng Asp 481:319–327. https://doi.org/10.1016/j.colsurfa.2015.05.026

    Article  CAS  Google Scholar 

  216. Sitko R, Turek E, Zawisza B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689. https://doi.org/10.1039/C3DT33097D

    Article  CAS  Google Scholar 

  217. Wu W, Yang Y, Zhou H et al (2012) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372. https://doi.org/10.1007/s11270-012-1372-5

    Article  CAS  Google Scholar 

  218. Najafi F, Moradi O, Rajabi M et al (2015) Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J Mol Liq 208:106–113. https://doi.org/10.1016/j.molliq.2015.04.033

    Article  CAS  Google Scholar 

  219. Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe 3 O 4 nanocomposite as an efficient absorbent for Cr (VI) removal. J Mater Sci 49:4236–4245. https://doi.org/10.1007/s10853-014-8118-2

    Article  CAS  Google Scholar 

  220. Duru I, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097–6116. https://doi.org/10.1007/s10853-016-9913-8

    Article  CAS  Google Scholar 

  221. Chen JH, Xing HT, Sun X et al (2015) Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl Surf Sci 356:355. https://doi.org/10.1016/j.apsusc.2015.08.076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ganesh Babu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadlalla, M.I., Kumar, P.S., Selvam, V. et al. Emerging energy and environmental application of graphene and their composites: a review. J Mater Sci 55, 7156–7183 (2020). https://doi.org/10.1007/s10853-020-04474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04474-0

Navigation