Skip to main content
Log in

Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

It is widely assumed that the discharge of nanoparticles into the environment may cause adverse effects on organisms. Nonetheless, so far most nanoparticles have demonstrated little to no observed hazards in multiple biological test systems. It is not until nanoparticles undergo transformations, e.g., release of metal ions, that most environmental toxicities are induced, yet the ionization of nanoparticles in natural oxic and anoxic conditions is poorly known. We hypothesized that in anaerobic conditions, where oxidation is absent or limited, metal nanoparticles should not release metal ions. We investigated the transformation of three commercially produced materials, i.e., copper nanoparticles, silver nanoparticles, and titania nanocrystals with an average particle size of 50 nm. The nanoparticles were subjected to different environmental conditions including oxic/anoxic suspension, incubation with natural organic matter, and pH gradient, then subsequently analyzed for zeta potential, hydrodynamic diameter, concentration of released metal ions, and generation of reactive oxygen species. Transmission electron microscopy was used to assess morphological changes. Under oxic conditions, results show that only 9.4 μg/mL of copper ions and 6.9 μg/mL of silver ions were released from nanoparticles, when continuously stirred over 48 h. These levels are low compared to levels found in natural media. Moreover, under anoxic conditions, an insignificant amount of copper ions of 0.9 μg/mL and silver ions, of 0.2 μg/mL, were released. For titania nanoparticle, less than 0.05 μg/mL ions were released under either oxic or anoxic conditions. Overall, our findings reveal the absence of ion release under anoxic conditions, and the very low levels of ion released under oxic conditions. As a consequence, the toxicity of Cu, Ag, and Ti nanoparticles should be very low in natural media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adegboyega NF, Sharma VK, Siskova KM, Vecerova R, Kolar M, Zbořil R, Gardea-Torresdey JL (2014) Enhanced formation of silver nanoparticles in Ag + -NOM-iron (II, III) systems and antibacterial activity studies. Environ Sci Technol 48(6):3228–3235

    CAS  Google Scholar 

  • Adegboyega NF, Sharma VK, Cizmas L, Sayes CM (2016) UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environ Chem Lett 14(3):353–357

    CAS  Google Scholar 

  • Ahn EC, Wong HSP, Pop E (2018) Carbon nanomaterials for non-volatile memories. Nat Rev Mater 3(3):1–15

    Google Scholar 

  • Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45(9):3895–3901

    CAS  Google Scholar 

  • Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  Google Scholar 

  • Alivio TEG, Fleer NA, Singh J, Nadadur G, Feng M, Banerjee S, Sharma VK (2018) Stabilization of Ag–Au bimetallic nanocrystals in aquatic environments mediated by dissolved organic matter: a mechanistic perspective. Environ Sci Technol 52(13):7269–7278

    CAS  Google Scholar 

  • Amde M, Liu J-F, Tan Z-Q, Bekana D (2017) Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. Environ Pollut 230:250–267

    CAS  Google Scholar 

  • Bäuerlein PS, Emke E, Tromp P, Hofman JAMH, Carboni A, Schooneman F, de Voogt P, van Wezel AP (2017) Is there evidence for man-made nanoparticles in the Dutch environment? Sci Total Environ 576:273–283

    Google Scholar 

  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    CAS  Google Scholar 

  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J food Drug Anal 22(1):64–75

    CAS  Google Scholar 

  • Gao X, Rodrigues SM, Spielman-Sun E, Lopes S, Rodrigues S, Zhang Y, Avellan A, Duarte RMBO, Duarte A, Casman EA (2019) Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environ Sci Technol 53(9):4959–4967

    CAS  Google Scholar 

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16(8):2503

    Google Scholar 

  • Garner KL, Suh S, Keller AA (2017) Assessing the Risk of Engineered Nanomaterials in the Environment: development and Application of the nanoFate Model. Environ Sci Technol 51(10):5541–5551

    CAS  Google Scholar 

  • Georgantzopoulou A, Almeida Carvalho P, Vogelsang C, Tilahun M, Ndungu K, Booth AM, Thomas KV, Macken A (2018) Ecotoxicological effects of transformed silver and titanium dioxide nanoparticles in the effluent from a lab-scale wastewater treatment system. Environ Sci Technol 52(16):9431–9441

    CAS  Google Scholar 

  • He D, Garg S, Waite TD (2012) H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. Langmuir 28(27):10266–10275

    CAS  Google Scholar 

  • He D, Jones AM, Garg S, Pham AN, Waite TD (2011) Silver nanoparticle − reactive oxygen species interactions: application of a charging − discharging model. J Phys Chem C 115(13):5461–5468

    CAS  Google Scholar 

  • Hedberg J, Blomberg E, Odnevall Wallinder I (2019) In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ Sci Technol 53(8):4030–4044

    CAS  Google Scholar 

  • Hou W-C, Stuart B, Howes R, Zepp RG (2013) Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Environ Sci Technol 47(14):7713–7721

    CAS  Google Scholar 

  • Huang Y-N, Qian T-T, Dang F, Yin Y-G, Li M, Zhou D-M (2019) Significant contribution of metastable particulate organic matter to natural formation of silver nanoparticles in soils. Nat Commun 10(1):1–8

    Google Scholar 

  • Irandost M, Akbarzadeh R, Pirsaheb M, Asadi A, Mohammadi P, Sillanpää M (2019) Fabrication of highly visible active N, S co-doped TiO2@ MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: mechanisms, modeling and degradation pathway. J Mol Liq 291:111342

    CAS  Google Scholar 

  • Joo SH, Zhao D (2017) Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J Hazard Mater 322:29–47

    CAS  Google Scholar 

  • Kaur M, Kaur M, Sharma VK (2018) Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment. Adv Coll Interface Sci 259:44–64

    CAS  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ SciTechnol Lett 1(1):65–70

    CAS  Google Scholar 

  • Kim Y, Smith JG, Jain PK (2018) Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nat Chem 10(7):763–769

    CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    CAS  Google Scholar 

  • Li K, Qian J, Wang P, Wang C, Fan X, Lu B, Tian X, Jin W, He X, Guo W (2019) Toxicity of three crystalline TiO2 nanoparticles in activated sludge: bacterial cell death modes differentially weaken sludge dewaterability. Environ Sci Technol 53(8):4542–4555

    CAS  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175

    CAS  Google Scholar 

  • Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M (2012) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46(13):7027–7036

    CAS  Google Scholar 

  • Nasseri S, Borna MO, Esrafili A, Kalantary RR, Kakavandi B, Sillanpää M, Asadi A (2018) Photocatalytic degradation of malathion using Zn 2 + -doped TiO 2 nanoparticles: statistical analysis and optimization of operating parameters. Appl Phys A 124(2):175

    CAS  Google Scholar 

  • Ortelli S, Costa AL, Blosi M, Brunelli A, Badetti E, Bonetto A, Hristozov D, Marcomini A (2017) Colloidal characterization of CuO nanoparticles in biological and environmental media. Environ Sci: Nano 4(6):1264–1272

    CAS  Google Scholar 

  • Pati SS, Singh LH, Guimarães EM, Mantilla J, Coaquira JAH, Oliveira AC, Sharma VK, Garg VK (2016) Magnetic chitosan-functionalized Fe3O4@ Au nanoparticles: synthesis and characterization. J Alloy Compd 684:68–74

    CAS  Google Scholar 

  • Pham TD, Bui TT, Nguyen VT, Bui TKV, Tran TT, Phan QC, Pham TD, Hoang TH (2018) Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: characteristics, mechanisms, and application for antibiotic removal. Polymers 10(2):220

    Google Scholar 

  • Quigg A, Chin W-C, Chen C-S, Zhang S, Jiang Y, Miao A-J, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustain Chem Eng 1(7):686–702

    CAS  Google Scholar 

  • Rai PK, Kumar V, Lee S, Raza N, Kim K-H, Ok YS, Tsang DCW (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19

    CAS  Google Scholar 

  • Ranjan S, Ramalingam C (2016) Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 14(4):487–494

    CAS  Google Scholar 

  • Romoser A, Ritter D, Majitha R, Meissner KE, McShane M, Sayes CM (2011) Mitigation of quantum dot cytotoxicity by microencapsulation. PLoS ONE 6(7):e22079

    CAS  Google Scholar 

  • Rong H, Garg S, Waite TD (2019) Impact of light and suwanee river fulvic acid on O2 and h2o2 mediated oxidation of silver nanoparticles in simulated natural waters. Environ Sci Technol 53(12):6688–6698

    CAS  Google Scholar 

  • Sani-Kast N, Labille J, Ollivier P, Slomberg D, Hungerbühler K, Scheringer M (2017) A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter. Proc Natl Acad Sci 114(10):E1756–E1765

    CAS  Google Scholar 

  • Selvaraj V, Bodapati S, Murray E, Rice KM, Winston N, Shokuhfar T, Zhao Y, Blough E (2014) Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. Int J Nanomed 9:1379

    Google Scholar 

  • Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health Part A 44(14):1485–1495

    CAS  Google Scholar 

  • Sharma VK, Zboril R (2017) Silver Nanoparticles in Natural Environment: Formation, Fate, and Toxicity. Springer, Bioactivity of Engineered Nanoparticles, pp 239–258

    Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem Soc Rev 44(23):8410–8423

    CAS  Google Scholar 

  • Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, Yan B, Ma X (2019) Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Sci Total Environ 653:1042–1051

    CAS  Google Scholar 

  • Shevlin D, O’Brien N, Cummins E (2018) Silver engineered nanoparticles in freshwater systems–Likely fate and behaviour through natural attenuation processes. Sci Total Environ 621:1033–1046

    CAS  Google Scholar 

  • Simeone FC, Blosi M, Ortelli S, Costa AL (2019) Assessing occupational risk in designs of production processes of nano-materials. NanoImpact 14:100149

    Google Scholar 

  • Stebounova LV, Guio E, Grassian VH (2011) Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 13(1):233–244

    CAS  Google Scholar 

  • Ubaid KA., X. Zhang, V. K. Sharma and L. Li (2019). Fate and risk of metal sulfide nanoparticles in the environment. Environmental Chem Letters: 1-15

  • Vishnuvarthanan M, Rajeswari N (2019) Food packaging: pectin–laponite–Ag nanoparticle bionanocomposite coated on polypropylene shows low O 2 transmission, low Ag migration and high antimicrobial activity. Environ Chem Lett 17(1):439–445

    CAS  Google Scholar 

  • Wan D, Sharma VK, Liu L, Zuo Y, Chen Y (2019) Mechanistic insight into the effect of metal ions on photogeneration of reactive species from dissolved organic matter. Environ Sci Technol 53(10):5778–5786

    CAS  Google Scholar 

  • Wang K, Garg S, Waite TD (2017) Light-mediated reactive oxygen species generation and iron redox transformations in the presence of exudate from the cyanobacterium Microcystis aeruginosa. Environ Sci Technol 51(15):8384–8395

    CAS  Google Scholar 

  • Wang P, Menzies NW, Chen H, Yang X, McGrath SP, Zhao F-J, Kopittke PM (2018) Risk of silver transfer from soil to the food chain is low after long-term (20 years) field applications of sewage sludge. Environ Sci Technol 52(8):4901–4909

    CAS  Google Scholar 

  • Westerhoff P, Atkinson A, Fortner J, Wong MS, Zimmerman J, Gardea-Torresdey J, Ranville J, Herckes P (2018) Low risk posed by engineered and incidental nanoparticles in drinking water. Nat Nanotechnol 13(8):661–669

    CAS  Google Scholar 

  • Westesen K, Bunjes H, Koch MHJ (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Controlled Release 48(2–3):223–236

    CAS  Google Scholar 

  • Xu J, Li J, Zhang R, He J, Chen Y, Bi N, Song Y, Wang L, Zhan Q, Abliz Z (2019) Development of a metabolic pathway-based pseudo-targeted metabolomics method using liquid chromatography coupled with mass spectrometry. Talanta 192:160–168

    CAS  Google Scholar 

  • Yin Y, Liu J, Jiang G (2012) Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. ACS Nano 6(9):7910–7919

    CAS  Google Scholar 

  • Yin Y, Han D, Tai C, Tan Z, Zhou X, Yu S, Liu J, Jiang G (2017a) Catalytic role of iron in the formation of silver nanoparticles in photo-irradiated Ag + -dissolved organic matter solution. Environ Pollut 225:66–73

    CAS  Google Scholar 

  • Yin Y, Xu W, Tan Z, Li Y, Wang W, Guo X, Yu S, Liu J, Jiang G (2017b) Photo-and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication. Environ Pollut 220:955–962

    CAS  Google Scholar 

  • Zhang D, Yan S, Song W (2014) Photochemically induced formation of reactive oxygen species (ROS) from effluent organic matter. Environ Sci Technol 48(21):12645–12653

    CAS  Google Scholar 

  • Zhang X, Xu Z, Wimmer A, Zhang H, Wang J, Bao Q, Gu Z, Zhu M, Zeng L, Li L (2018) Mechanism for sulfidation of silver nanoparticles by copper sulfide in water under aerobic conditions. Environ Sci: Nano 5(12):2819–2829

    CAS  Google Scholar 

  • Zhou H, Lian L, Yan S, Song W (2017) Insights into the photo-induced formation of reactive intermediates from effluent organic matter: the role of chemical constituents. Water Res 112:120–128

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie M. Sayes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulenos, M.R., Liu, J., Lujan, H. et al. Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: Evidence for the low toxicity of nanoparticles. Environ Chem Lett 18, 1319–1328 (2020). https://doi.org/10.1007/s10311-020-00985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-020-00985-z

Keywords

Navigation