Skip to main content
Log in

High-protein diet and omega-3 fatty acids improve redox status in olanzapine-treated rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study aimed to estimate the effects of high-protein diet (PD)—isolated whey protein and omega-3 fatty acids—docosahexaenoic and eicosapentaenoic acid on oxidative parameters of rats treated with Olanzapine (OLZ). Experiments were carried out on 8-week-old Wistar albino male rats (n = 64) weighing 200 ± 20 g. By dietary and pharmacological treatment, all animals were divided into 8 groups: 1. CTRL group; 2. CTRL + OLZ group; 3. CTRL + FA group; 4. CTRL + OLZ + FA group; 5. PD group; 6. PD + OLZ group; 7. PD + FA group; 8. PD + OLZ + FA group. After 6 weeks of pharmacological/diet treatment, all animals were sacrificed to collect blood samples and determine the biomarkers of oxidative stress. The following oxidative stress markers were measured spectrophotometrically: superoxide anion radical (O2), hydrogen peroxide (H2O2), nitric oxide (NO), index of lipid peroxidation measured as TBARS, reduced glutathione, catalase and superoxide dismutase. The study has shown that Olanzapine treatment was associated with increased release of pro-oxidants and diminished activity of anti-oxidant markers. Additional supplementation with PD and FA succeeded in abolishing the negative influence in most of the measured parameters. However, these beneficial impacts were stronger in the case of their separate application, which could be the practical and clinical importance of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cuenca-Sánchez M, Navas-Carrillo D, Orenes-Piñero E (2015) Controversies surrounding high-protein diet intake: satiating effect and kidney and bone health. Adv Nutr 6:260–266. https://doi.org/10.3945/an.114.007716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flaim C, Kob M, Di Pierro AM, Herrmann M, Lucchin L (2017) Effects of a whey protein supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: a pilot study. J Nutr Biochem 50:95–102. https://doi.org/10.1016/j.jnutbio.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Kim J, Paik HD, Yoon YC, Park E (2013) Whey protein inhibits iron overload-induced oxidative stress in rats. J Nutr Sci Vitaminol 59:198–205. https://doi.org/10.3177/jnsv.59.198

    Article  CAS  PubMed  Google Scholar 

  4. Bhana N, Foster RH, Olney R, Plosker GL (2001) Olanzapine: an updated review of its use in the management of schizophrenia. Drugs 61:111–161. https://doi.org/10.2165/00003495-200161010-00011

    Article  CAS  PubMed  Google Scholar 

  5. Hirsch L, Yang J, Bresee L, Jette N, Patten S, Pringsheim T (2017) Second-generation antipsychotics and metabolic side effects: a systematic review of population-based studies. Drug Saf 40:771–781. https://doi.org/10.1007/s40264-017-0543-0

    Article  CAS  PubMed  Google Scholar 

  6. Katagiri H, Taketsuna M, Kondo S, Kajimoto K, Aoi E, Tanji Y (2018) Effectiveness and safety of oral olanzapine treatment transitioned from rapid-acting intramuscular olanzapine for agitation associated with schizophrenia. Neuropsychiatr Dis Treat 14:1083–1091. https://doi.org/10.2147/NDT.S158339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ondo WG, Levy JK, Vuong KD, Hunter C, Jankovic J (2002) Olanzapine treatment for dopaminergic-induced hallucinations. Mov Disord 17:1031–1035. https://doi.org/10.1002/mds.10217

    Article  PubMed  Google Scholar 

  8. Todorović N, Tomanović N, Gass P, Filipović D (2016) Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. Eur J Pharm Sci 81:94–102. https://doi.org/10.1016/j.ejps.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  9. Eftekhari A, Azarmi Y, Parvizpur A, Eghbal MA (2016) Involvement of oxidative stress and mitochondrial/lysosomal cross-talk in olanzapine cytotoxicity in freshly isolated rat hepatocytes. Xenobiotica 46:369–378. https://doi.org/10.3109/00498254.2015.1078522

    Article  CAS  PubMed  Google Scholar 

  10. Andjic M, Draginic N, Radoman K, Jeremic J, Turnic TN, Srejovic I, Zivkovic V, Kovacevic M, Bolevich S, Jakovljevic V (2019) Flaxseed and evening primrose oil slightly affect systolic and diastolic function of isolated heart in male but not in female rats. Int J Vitam Nutr Res 8:1–9. https://doi.org/10.1024/0300-9831/a000612

    Article  Google Scholar 

  11. Vasiljevic D, Veselinovic M, Jovanovic M, Jeremic N, Arsic A, Vucic V, Lucic-Tomic A, Zivanovic S, Djuric D, Jakovljevic V (2016) Evaluation of the effects of different supplementation on oxidative status in patients with rheumatoid arthritis. Clin Rheumatol 35:1909–1915. https://doi.org/10.1007/s10067-016-3168-2

    Article  PubMed  Google Scholar 

  12. Xu F, Fan W, Wang W, Tang W, Yang F, Zhang Y, Cai J, Song L, Zhang C (2019) Effects of omega-3 fatty acids on metabolic syndrome in patients with schizophrenia: a 12-week randomized placebo-controlled trial. Psychopharmacology 236:1273–1279. https://doi.org/10.1007/s00213-018-5136-9

    Article  CAS  PubMed  Google Scholar 

  13. Faghihi T, Jahed A, Mahmoudi-Gharaei J, Sharifi V, Akhondzadeh S, Ghaeli P (2012) Role of Omega-3 fatty acids in preventing metabolic disturbances in patients on olanzapine plus either sodium valproate or lithium: a randomized double-blind placebo-controlled trial. Daru 20:43. https://doi.org/10.1186/2008-2231-20-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Biswas P, Mukhopadhyay A, Kabir SN, Mukhopadhyay PK (2019) High-protein diet ameliorates arsenic-induced oxidative stress and antagonizes uterine apoptosis in rats. Biol Trace Elem Res 192:222–233. https://doi.org/10.1007/s12011-019-1657-2

    Article  CAS  PubMed  Google Scholar 

  15. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132

    Google Scholar 

  16. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170. https://doi.org/10.1016/0022-1759(80)90340-3

    Article  CAS  PubMed  Google Scholar 

  17. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and (15 N) nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-x

    Article  CAS  PubMed  Google Scholar 

  18. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  19. Beutler E (1984) Superoxide dismutase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune & Stratton, New York, pp 83–85

    Google Scholar 

  20. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood Glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  21. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  22. Yao JK, Leonard S, Reddy RD (2000) Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr Res 42:7–17. https://doi.org/10.1016/S0920-9964(99)00095-X

    Article  CAS  PubMed  Google Scholar 

  23. Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71:1002–1012. https://doi.org/10.1046/j.1471-4159.1998.71031002.x

    Article  CAS  PubMed  Google Scholar 

  24. Pai BN, Janakiramaiah N, Gangadhar BN, Ravindranath V (1994) Depletion of glutathione and enhanced lipid peroxidation in the CSF of acute psychotics following haloperidol administration. Biol Psychiatry 36:489–491. https://doi.org/10.1016/0006-3223(94)90648-3

    Article  CAS  PubMed  Google Scholar 

  25. Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatr Res 37:43–51. https://doi.org/10.1016/S0022-3956(02)00048-1

    Article  PubMed  Google Scholar 

  26. Lieberman JA (2004) Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 18:251–267. https://doi.org/10.2165/00023210-200418040-00005

    Article  CAS  PubMed  Google Scholar 

  27. Dalla Libera A, Rigobello MP, Bindoli A (1996) Inhibitory action of neuroleptic drugs and serotonin on dopamine autoxidation and lipid peroxidation. Prog Neuropsychopharmacol Biol Psychiatry 19:291–298

    Article  Google Scholar 

  28. Reinke A, Martins MR, Lima M, Moreira JC, Dal-Pizzol F, Quevedo J (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160. https://doi.org/10.1016/j.neulet.2004.09.032

    Article  CAS  PubMed  Google Scholar 

  29. Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, Ruther E, Emrich H, Schneider U, Bleich S (2005) Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci 17:227–231. https://doi.org/10.1176/jnp.17.2.227

    Article  CAS  PubMed  Google Scholar 

  30. Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, Zhou DF (2006) Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 81:291–300. https://doi.org/10.1016/j.schres.2005.10.011

    Article  PubMed  Google Scholar 

  31. Żebrowska E, Maciejczyk M, Żendzian-Piotrowska M, Zalewska A, Chabowski A (2019) High protein diet induces oxidative stress in rat cerebral cortex and hypothalamus. Int J Mol Sci 20:1547. https://doi.org/10.3390/ijms20071547

    Article  CAS  PubMed Central  Google Scholar 

  32. Ji M, Li S, Dong Q, Hu W (2018) Impact of early high-protein diet on neurofunctional recovery in rats with ischemic stroke. J Med Sci Monit 24:2235–2243. https://doi.org/10.12659/msm.906533

    Article  CAS  Google Scholar 

  33. Türkez H, Toğar B (2010) The genotoxic and oxidative damage potential of olanzapine in vitro. Toxicol Ind Health 26:583–588. https://doi.org/10.1177/0748233710373090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Junior projects 01/15 and 03/18 of Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM, VLJ, Sergey Bolevich; Methodology: VZ, IS, TNT, AV, ZP, JS; Writing—review and editing: VZ, TNT; Supervision: MM, VLJ, Sergey Bolevich. All authors have read the manuscript and authorized the submission for publication.

Corresponding author

Correspondence to Vladimir Lj. Jakovljevic.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This study was conducted in the laboratory for Cardiovascular Physiology (Faculty of Medical Sciences, University of Kragujevac, Serbia). The study protocol was approved by the Ethical Committee for the welfare of experimental animals of the Faculty of Medical Sciences, University of Kragujevac, Serbia (permit number: 01-12860). All experiments were performed according to EU Directive for welfare of laboratory animals (86/609/EEC) and principles of Good Laboratory Practice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrovic, M., Nikolic Turnic, T., Zivkovic, V. et al. High-protein diet and omega-3 fatty acids improve redox status in olanzapine-treated rats. Mol Cell Biochem 468, 143–152 (2020). https://doi.org/10.1007/s11010-020-03718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03718-6

Keywords

Navigation