Spin flop and crystalline anisotropic magnetoresistance in CuMnAs

M. Wang, C. Andrews, S. Reimers, O. J. Amin, P. Wadley, R. P. Campion, S. F. Poole, J. Felton, K. W. Edmonds, B. L. Gallagher, A. W. Rushforth, O. Makarovsky, K. Gas, M. Sawicki, D. Kriegner, J. Zubáč, K. Olejník, V. Novák, T. Jungwirth, M. Shahrokhvand, U. Zeitler, S. S. Dhesi, and F. Maccherozzi
Phys. Rev. B 101, 094429 – Published 23 March 2020

Abstract

We report magnetic-field-induced rotation of the antiferromagnetic Néel vector in epitaxial CuMnAs thin films. First, using soft x-ray magnetic linear dichroism spectroscopy as well as magnetometry, we demonstrate spin-flop switching and continuous spin reorientation in films with uniaxial and biaxial magnetic anisotropies, respectively, for applied magnetic fields of the order of 2 T. The remnant antiferromagnetic domain configurations are determined using x-ray photoemission electron microscopy. Next, we show that the Néel vector reorientations are manifested in the longitudinal and transverse anisotropic magnetoresistance. Dependencies of the electrical resistance on the orientation of the Néel vector with respect to both the electrical current direction and the crystal symmetry are identified, including a weak fourth-order term evident at high magnetic fields. The results provide characterization of key parameters including the anisotropic magnetoresistance coefficients, magnetocrystalline anisotropy, and spin-flop field in epitaxial films of tetragonal CuMnAs, a candidate material for antiferromagnetic spintronics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 1 November 2019
  • Revised 14 February 2020
  • Accepted 5 March 2020

DOI:https://doi.org/10.1103/PhysRevB.101.094429

©2020 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

M. Wang1, C. Andrews1, S. Reimers1,2, O. J. Amin1, P. Wadley1, R. P. Campion1, S. F. Poole1, J. Felton1, K. W. Edmonds1,*, B. L. Gallagher1, A. W. Rushforth1, O. Makarovsky1, K. Gas3, M. Sawicki3, D. Kriegner4, J. Zubáč4,5, K. Olejník4, V. Novák4, T. Jungwirth4,1, M. Shahrokhvand6, U. Zeitler6, S. S. Dhesi2, and F. Maccherozzi2

  • 1School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
  • 2Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
  • 3Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
  • 4Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
  • 5Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
  • 6High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands

  • *Kevin.edmonds@nottingham.ac.uk

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 9 — 1 March 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×