Skip to main content
Log in

Production of Value-Added Microbial Metabolites: Oleaginous Fungus as a Tool for Valorization of Dairy By-products

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Mucor circinelloides is a filamentous fungus capable of producing mycelium-bound lipase and lipids and able to assimilate a wide array of substrates, like agricultural wastes and industrial effluents. A biotechnological valorization of cheese whey is described herein, in which simultaneous reduction of the organic loading and conversion of the various compounds of the by-product into added-value microbial metabolites is obtained. M. circinelloides URM 4182 was tested for the ability of producing biomass containing lipids and mycelium-bound lipase using raw cheese whey as culture medium. The fungal cultivation assays were performed in non-supplemented cheese whey at pH 4.5, 26 °C, 250 rpm for 120 h providing biomass concentration of 4.7 g L−1 containing lipids (22.5% of dry biomass weight) and lipolytic activities up to 160 U g−1. The mycelium-bound lipase was characterized in terms of its biochemical and kinetic parameters and tested on biogas production assays of cheese whey as a way to enhance the lipid hydrolysis, the limiting step in anaerobic digestion. Results demonstrate that the addition of M. circinelloides lipase on cheese whey reduced the lag phase of anaerobic digestion up to 43.7%, and the biogas production was increased by up to ninefold when compared with the control experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oleskowicz-Popiel P, Kádár Z, Heiske S, Klein-Marcuschamer D, Simmons BA, Blanch HW, Schmidt JE (2012) Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming–evaluation of a concept for a farm-scale biorefinery. Bioresour Technol 104:440–446

    CAS  PubMed  Google Scholar 

  2. Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396

    PubMed  Google Scholar 

  3. González S (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57(1):1–11

    Google Scholar 

  4. Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, Kopsahelis N (2019) Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods 8(8):347

    CAS  PubMed Central  Google Scholar 

  5. Paximada P, Koutinas AA, Scholten E, Mandala IG (2016) Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners. Food Hydrocoll 54:245–254

    CAS  Google Scholar 

  6. Girard J-M, Roy M-L, Hafsa MB, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschênes J-S (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Google Scholar 

  7. Chandra R, Castillo-Zacarias C, Delgado P, Parra-Saldívar R (2018) A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. J Clean Prod 183:1184–1196

    CAS  Google Scholar 

  8. Azbar N, Dokgöz FTÇ, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34(17):7441–7447

    CAS  Google Scholar 

  9. Gannoun H, Khelifi E, Bouallagui H, Touhami Y, Hamdi M (2008) Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresour Technol 99(14):6105–6111

    CAS  PubMed  Google Scholar 

  10. Alves AM, de Moura RB, Carvalho AKF, de Castro HF, Andrade GS (2019) Penicillium citrinum whole-cells catalyst for the treatment of lipid-rich wastewater. Biomass Bioenergy 120:433–438

    CAS  Google Scholar 

  11. Carvalho AKF, Rivaldi JD, Barbosa JC, De Castro HF (2015) Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides–a sustainable pathway for biofuel production. Bioresour Technol 181:47–53

    CAS  PubMed  Google Scholar 

  12. Carvalho AKF, da Conceição LRV, Silva JPV, Perez VH, De Castro HF (2017) Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification. Fuel 202:503–511

    CAS  Google Scholar 

  13. Carvalho AKF, Bento HBS, Reis CER, De Castro HF (2019) Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Bioresour Technol 276:269–275

    CAS  PubMed  Google Scholar 

  14. Andrade GSS, Carvalho AKF, Romero CM, Oliveira PC, De Castro HF (2014) Mucor circinelloides whole-cells as a biocatalyst for the production of ethyl esters based on babassu oil. Bioprocess Biosyst Eng 37:2539–2548

    CAS  PubMed  Google Scholar 

  15. Carvalho AKF, Faria ELP, Rivaldi JD, Andrade GSS, Oliveira PC, De Castro HF (2015b) Performance of whole-cells lipase derived from Mucor circinelloides as a catalyst in the ethanolysis of non-edible vegetable oils under batch and continuous run conditions. Ind Crop Prod 67:287–294

    CAS  Google Scholar 

  16. Reis C, Bento H, Alves T, Carvalho A, De Castro HF (2019) Vinasse treatment within the sugarcane-ethanol industry using ozone combined with anaerobic and aerobic microbial processes. Environments 6(1):5

    Google Scholar 

  17. Reis CER, Carvalho AKF, Bento HBS, De Castro HF (2019) Integration of microbial biodiesel and bioethanol industries through utilization of vinasse as substrate for oleaginous fungi. Bioresour Technol Rep 6:46–53

    Google Scholar 

  18. Freitas L, Bueno T, Perez VH, Santos JC, De Castro HF (2007) Enzymatic hydrolysis of soybean oil using lipase from different sources to yield concentrated of polyunsaturated fatty acids. World J Microbiol Biotechnol 23:1725–1731

    CAS  PubMed  Google Scholar 

  19. APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association (APHA), Washington

    Google Scholar 

  20. Kennelly JJ (1996) The fatty acid composition of milk fat as influenced by feeding oilseeds. Anim Feed Sci Technol 60(3–4):137–152

    CAS  Google Scholar 

  21. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064

    CAS  PubMed  Google Scholar 

  22. Fang C, Boe K, Angelidaki I (2011) Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour Technol 102(2):1005–1011

    CAS  PubMed  Google Scholar 

  23. Carvalho AKF, Bento HB, Rivaldi JD, De Castro HF (2018) Direct transesterification of Mucor circinelloides biomass for biodiesel production: effect of carbon sources on the accumulation of fungal lipids and biofuel properties. Fuel 234:789–796

    CAS  Google Scholar 

  24. Talebi AF, Tabatabaei M, Chisti Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 1:55–57

    CAS  Google Scholar 

  25. Szczęsna-Antczak M, Antczak T, Piotrowicz-Wasiak M, Rzyska M, Binkowska N, Bielecki S (2006) Relationships between lipases and lipids in mycelia of two Mucor strains. Enzym Microb Technol 39(6):1214–1222

    Google Scholar 

  26. Szczęsna-Antczak M, Struszczyk-Świta K, Rzyska M, Szeląg J, Stańczyk Ł, Antczak T (2018) Oil accumulation and in situ trans/esterification by lipolytic fungal biomass. Bioresour Technol 265:110–118

    PubMed  Google Scholar 

  27. Marotti BS, Cortez DV, Gonçalves DB, De Castro HF (2017) Screening of species from the genus Penicillium producing cell bound lipases to be applied in the vegetable oil hydrolysis. Quim Nova 40(4):427–435

    CAS  Google Scholar 

  28. Rehman S, Bhatti HN, Bhatti IA, Asgher M (2011) Optimization of process parameters for enhanced production of lipase by Penicillium notatum using agricultural wastes. Afr J Biotechnol 10(84):19580–19589

    CAS  Google Scholar 

  29. Badgujar KC, Pai PA, Bhanage BM (2016) Enhanced biocatalytic activity of immobilized Pseudomonas cepacia lipase under sonicated condition. Bioprocess Biosyst Eng 39(2):211–221

    CAS  PubMed  Google Scholar 

  30. Purwanto MGM, Maretha MV, Wahyudi M, Goeltom MT (2015) Whole cell hydrolysis of sardine (Sardinella lemuru) oil waste using Mucor circinelloides NRRL 1405 immobilized in poly-urethane foam. Procedia Chem 14:256–262

    CAS  Google Scholar 

  31. Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interf Sci 147-148:237–250

    CAS  Google Scholar 

  32. Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag 48:492–502

    CAS  PubMed  Google Scholar 

  33. Mendes AA, Pereira EB, De Castro HF (2006) Effect of the enzymatic hydrolysis pretreatment of lipids-rich wastewater on the anaerobic biodigestion. Biochem Eng J 32(3):185–190

    CAS  Google Scholar 

  34. Tyagi RD, Kluepfel D (1998) Bioconversion of cheese whey to organic acids. In: Bioconversion of waste materials to industrial products. Springer, Boston, pp 342–375

    Google Scholar 

  35. Mawson AJ (1994) Bioconversions for whey utilization and waste abatement. Bioresour Technol 47(3):195–203

    CAS  Google Scholar 

  36. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815

    CAS  PubMed  Google Scholar 

  37. Luque L, Orr VC, Chen S, Westerhof R, Oudenhoven S, van Rossum G, Rehmann L (2016) Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production. Bioresour Technol 214:660–669

    CAS  PubMed  Google Scholar 

  38. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577

    CAS  Google Scholar 

  39. Parsons S, Abeln F, McManus MC, Chuck CJ (2019) Techno-economic analysis (TEA) of microbial oil production from waste resources as part of a biorefinery concept: assessment at multiple scales under uncertainty. J Chem Technol Biotechnol 94(3):701–711

    CAS  Google Scholar 

  40. Zheng Z, Xie J, Liu P, Li X, Ouyang J (2019) Elegant and efficient biotransformation for dual production of D-tagatose and bioethanol from cheese whey powder. J Agric Food Chem 67(3):829–835

    CAS  PubMed  Google Scholar 

  41. Damodaran S (2011) Straightforward process for removal of milk fat globule membranes and production of fat-free whey protein concentrate from cheese whey. J Agric Food Chem 59(18):10271–10276

    CAS  PubMed  Google Scholar 

  42. Rivas J, Prazeres AR, Carvalho F, Beltran F (2010) Treatment of cheese whey wastewater: combined coagulation−flocculation and aerobic biodegradation. J Agric Food Chem 58(13):7871–7877

    CAS  PubMed  Google Scholar 

Download references

Funding

Authors are thankful to the FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for Grant Nos. 16/10636-8 and 17/12907-8, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil) Finance Code 001, and to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (Process Number 433248/2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heizir F. De Castro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 14 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braz, C.A., Carvalho, A.K.F., Bento, H.B.S. et al. Production of Value-Added Microbial Metabolites: Oleaginous Fungus as a Tool for Valorization of Dairy By-products. Bioenerg. Res. 13, 963–973 (2020). https://doi.org/10.1007/s12155-020-10121-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10121-y

Keywords

Navigation