Skip to main content
Log in

A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper we study a broad class of nonconvex and nonsmooth minimization problems, whose objective function is the sum of a smooth function of the entire variables and two nonsmooth functions of each variable. We adopt the framework of the proximal alternating linearized minimization (PALM), together with the inertial strategy to accelerate the convergence. Since the inertial step is performed once the x-subproblem/y-subproblem is updated, the algorithm is a Gauss–Seidel type inertial proximal alternating linearized minimization (GiPALM) algorithm. Under the assumption that the underlying functions satisfy the Kurdyka–Łojasiewicz (KL) property and some suitable conditions on the parameters, we prove that each bounded sequence generated by GiPALM globally converges to a critical point. We apply the algorithm to signal recovery, image denoising and nonnegative matrix factorization models, and compare it with PALM and the inertial proximal alternating linearized minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38, 1102–1119 (2000)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  Google Scholar 

  4. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137, 91–129 (2013)

    Article  MathSciNet  Google Scholar 

  5. Auslender, A.: Asymptotic properties of the fenchel dual functional and applications to decomposition problems. J. Optim. Theory Appl. 73, 427–499 (1992)

    Article  MathSciNet  Google Scholar 

  6. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice hall, Englewood Cliffs, NJ (1989)

  7. Bertsekas, D.P.: Nonlinear programming. J. Oper. Res. Soc. 48, 334–334 (1997)

    Article  Google Scholar 

  8. Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J. Optim. 23, 2037–2060 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bolte, J., Daniilidis, A., Lewis, A.S., Shiota, M.: Clark subgradients of stratifiable functions. SIAM J. Optim. 18, 556–572 (2007)

    Article  MathSciNet  Google Scholar 

  10. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146, 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  11. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers (2014). arXiv preprint arXiv:1404.4582

  13. Bot, R.I., Cestnek, E.R.: An inertial Tseng’s type proximal algorithm for nonsmooth and nonconvex optimization problems. J. Optim. Theory Appl. 171, 600–616 (2016)

    Article  MathSciNet  Google Scholar 

  14. Chen, C.H., Ma, S.Q., Yang, J.F.: A general inertial proximal point algorithm for mixed variational inequality problem. SIAM J. Optim. 25, 2120–2142 (2015)

    Article  MathSciNet  Google Scholar 

  15. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  16. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

    Article  MathSciNet  Google Scholar 

  17. Li, Y.F., Ngom, A.: The nonnegative matrix factorization MATLAB toolbox for high dimensional biological data. School of Computer Science

  18. Nesterov, Y.: Lectures on convex optimization. Springer (2018)

  19. Ochs, P., Chen, Y.J., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7, 1388–1419 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53, 171–181 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9, 1756–1787 (2017)

    Article  MathSciNet  Google Scholar 

  22. Peharz, R., Pernkopf, F.: Sparse nonnegative matrix factorization with \(l_0\)-constraints. Neurocomputing 80, 38–46 (2012)

    Article  Google Scholar 

  23. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4, 1–17 (1964)

    Article  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  25. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  26. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  27. Xu, Z.B., Chang, X.Y., Xu, F.M., Zhang, H.: \(L_{1/2}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23, 1013–1027 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Xingju Cai was supported by the NSFC grants 11871279 and 11571178. Deren Han was supported by the NSFC grants 11625105 and 11431002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingju Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Cai, X. & Han, D. A Gauss–Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems. J Glob Optim 76, 863–887 (2020). https://doi.org/10.1007/s10898-019-00819-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00819-5

Keywords

Mathematics Subject Classification

Navigation