Skip to main content
Log in

Flexible Composite Materials — Between Inorganic Fibers and Organic Polymers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to develop a flexible composite material that could play a good cushion role for high temperature ceramic membrane cleaning, we herein report a flexible composite material which could achieve effective buffering to relieve the stress generated by rigid contact and play a certain sealing effect. The coating method is applied to fabricate the composite material, which can be produced by multi-layer superposition using high silica fiber fabric and waterborne polyurethane. The results show that waterborne polyurethane (WPU) as a binder coating plays a key role in improving the strength by six times compared to raw materials and maintaining the elasticity of materials. Meanwhile, the thermal degradation mechanism of the composites calcined at different temperatures (700–1200 °C) in air atmosphere is investigated. The as-made composite materials still have good flexibility, and the tensile strength is about 2.4 MPa after calcination at 1000 °C for 80 h. This provides a method to prepare flexible cushion composite materials for ceramic membrane filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Li, J. Hu, and N. Xia, J. Clean Prod., 131, 341 (2016).

    Article  Google Scholar 

  2. H. Li, Y. Ma, F. Duan, K. He, L. Zhu, T. Huang, T. Kimoto, X. Ma, T. Ma, L. Xu, B. Xu, S. Yang, S. Ye, Z. Sun, J. An, and Z. Zhang, Environ. Pollut., 229, 339 (2017).

    Article  CAS  Google Scholar 

  3. M. Lupion, B. Navarrete, B. Alonso-Fariñas, and M. Rodriguez-Galan, Fuel, 108, 24 (2013).

    Article  CAS  Google Scholar 

  4. M. Nacken, S. Heidenreich, M. Hackel, and G. Schaub, Appl. Catal B-Environ., 70, 370 (2007).

    Article  CAS  Google Scholar 

  5. W. Wei, W. Zhang, Q. Jiang, P. Xu, Z. Zhong, F. Zhang, and W. Xing, J. Membr. Sci., 540, 381 (2017).

    Article  CAS  Google Scholar 

  6. U. Rhyner, R. Mai, H. Leibold, and S. M. A. Biollaz, Biomass and Bioenergy, 53, 72 (2013).

    Article  CAS  Google Scholar 

  7. B. Hofs, J. Ogier, D. Vries, E. F. Beerendonk, and E. R. Cornelissen, Sep. Purif. Technol., 79, 365 (2011).

    Article  CAS  Google Scholar 

  8. S. Heidenreich, Fuel, 104, 83 (2013).

    Article  CAS  Google Scholar 

  9. B. Alonso-Fariñas, M. Lupion, M. Rodriguez-Galan, and J. Martinez-Fernandez, Fuel, 114, 120 (2013).

    Article  CAS  Google Scholar 

  10. Y. M. Jo, R. B. Hutchison, and J. A. Raper, Powder Technol., 91, 55 (1997).

    Article  CAS  Google Scholar 

  11. M. C. Fraga, S. Sanches, V. J. Pereira, J. G. Crespo, L. Yuan, J. Marcher, M. V. Martínez de Yuso, E. Rodríguez-Castellón, and J. Benavente, J. Eur. Ceram. Soc., 37, 899 (2017).

    Article  CAS  Google Scholar 

  12. H. J. Choi, J. U. Kim, H. S. Kim, S. H. Kim, and M. H. Lee, Ceram. Int., 41, 10030 (2015).

    Article  CAS  Google Scholar 

  13. Y. Zhou, M. Fukushima, H. Miyazaki, Y. Yoshizawa, K. Hirao, Y. Iwamoto, and K. Sato, J. Membr. Sci., 369, 112 (2011).

    Article  CAS  Google Scholar 

  14. VDI 3677 Blatt 3, 2010.

  15. M. A. Choiron, Y. Kurata, S. Haruyama, and K. Kaminishi, Int. J. Aerosp. Mech. Eng., 5, 283 (2011).

    Google Scholar 

  16. D. V. Savchenko, A. A. Serdan, V. A. Morozov, G. V. Tendeloo, and S. G. Ionov, New Carbon Mater., 27, 12 (2012).

    Article  CAS  Google Scholar 

  17. H. Javed, A. G. Sabato, K. Herbrig, D. Ferrero, C. Walter, M. Salvo, and F. Smeacetto, Int. J. Appl. Ceram. Technol., 15, 999 (2018).

    Article  CAS  Google Scholar 

  18. C. X. Zhao, W. D. Zhang, and D. C. Sun, Polym. Compos., 30, 649 (2009).

    Article  CAS  Google Scholar 

  19. X. Chen, Y. Hu, L. Song, and C. Jiao, Polym. Adv. Technol., 19, 322 (2008).

    Article  CAS  Google Scholar 

  20. C. Y. Bai, X. Y. Zhang, J. B. Dai, and C. Y. Zhang, Prog. Org. Coat., 59, 331 (2007).

    Article  CAS  Google Scholar 

  21. H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, Compos. Part A, 30, 489 (1999).

    Article  Google Scholar 

  22. E. Mouchon and P. Colomban, Composites, 26, 175 (1995).

    Article  CAS  Google Scholar 

  23. J. He, X. Li, D. Su, H. Ji, and X. Wang, J. Eur. Ceram. Soc., 36, 1487 (2016).

    Article  CAS  Google Scholar 

  24. M. K. Mahapatra and K. Lu, Mat. Sci. Eng. R., 67, 65 (2010).

    Article  CAS  Google Scholar 

  25. Y. Zhang, Y. Vulfson, Q. Zheng, J. Luo, S. H. Kim, and Y. Yue, J. Non-Cryst. Solids., 476, 122 (2017).

    Article  CAS  Google Scholar 

  26. M. Begum, A. K. M. M. Rahman, H. T. Zubair, H. A. Abdul-Rashid, Z. Yusoff, M. Begum, M. Alkhorayef, K. Alzimami, and D. A. Bradley, Radiat. Phys. Chem., 141, 73 (2017).

    Article  CAS  Google Scholar 

  27. H. R. Lu and C. A. Wang, Ceram. Int., 39, 6041 (2013).

    Article  CAS  Google Scholar 

  28. J. H. Park, K. Y. Yoon, H. Na, Y. S. Kim, J. Hwang, J. Kim, and Y. H. Yoon, Sci. Total Environ., 409, 4132 (2011).

    Article  CAS  Google Scholar 

  29. H. C. Park, J. H. Chun, S. H. Kim, J. M. Ko, S. I. Jo, J. S. Chung, and H. Sohn, J. Power Sources, 92, 272 (2001).

    Article  CAS  Google Scholar 

  30. R. Naslain, Int. J. Appl. Ceram. Technol., 2, 75 (2005).

    Article  CAS  Google Scholar 

  31. M. Ruggles-Wrenn, N. Boucher, and C. Przybyla, Int. J. Appl. Ceram. Technol., 15, 3 (2018).

    Article  CAS  Google Scholar 

  32. C. Hu, L. Liu, B. Jiang, and Y. Huang, J. Aeronautical Mater., 35, 66 (2012).

    CAS  Google Scholar 

  33. Z. Liu, H. Wang, J. Huo, Y. Lei, N. Chen, and S. Lv, Non-Metallic Mines., 35, 36 (2012).

    Google Scholar 

  34. X. Tao, L. Zhang, X. Ma, X. Xu, A. Guo, F. Hou, and J. Liu, Ceram Int., 43, 14292 (2017).

    Article  CAS  Google Scholar 

  35. L. S. Teo, C. Y. Chen, and J. F. Kuo, Macromolecules, 30, 1793 (1997).

    Article  CAS  Google Scholar 

  36. C. C. Santos, M. C. Delpech, and F. M. B. Coutinho, J. Mater Sci., 44, 1317 (2009).

    Article  CAS  Google Scholar 

  37. I. Javni, Z. S. Petrovic, A. Guo, and R. Fuller, J. Appl. Polym. Sci., 77, 1723 (1999).

    Article  Google Scholar 

  38. B. Ni, L. Yang, C. Wang, L. Wang, and D. E. Finlow, J. Therm. Anal. Calorim., 100, 239 (2010).

    Article  CAS  Google Scholar 

  39. A. G. Evans, J. Am. Ceram Soc., 73, 187 (1990).

    Article  CAS  Google Scholar 

  40. R. R. Naslain, Compos. Part A: Appl. Sci. Manuf., 29, 1145 (1998).

    Article  Google Scholar 

  41. N. E. Prasad, S. Kumari, S. V. Kamat, M. Vijayakumar, and G. Malakondaiah, Eng. Fract. Mech., 71, 2589 (2004).

    Article  Google Scholar 

  42. M. S. Aslanova, Glass Ceram., 17, 563 (1960).

    Article  Google Scholar 

  43. Y. Zheng and S. Wang, Appl. Surf Sci., 258, 2901 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Open Research Fund of State Key Laboratory of Multiphase Complex Systems (No. MPCS-2019-D-07) and National Key R&D Program of China (Grant No.: 2016YFB0601100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Liu, Q., Si, K. et al. Flexible Composite Materials — Between Inorganic Fibers and Organic Polymers. Fibers Polym 21, 628–635 (2020). https://doi.org/10.1007/s12221-020-9551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9551-2

Keywords

Navigation