Skip to main content
Log in

Finite Element Modeling of the Compression Garments Structural Effect on the Pressure Applied to Leg

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Compression garments due to their numerous medical applications have been recently attracted to be mechanically analyzed for their compression mechanism. Predicting the pressures applied to musculoskeletal tissues supported by these garments is a good solution for doing such analyzing which could be simply achieved by the help of finite element method. In this paper, the main aim was investigating the structural effect of knitted compression garments used for supporting the body lower-limb musculoskeletal system. Compression garments of weft knitted rib structure containing elastane yarn were prepared according to the leg’s dimensions of a healthy 27-year old person. Using Kikuhime measuring device, experimental values of the applied pressure were measured in order to be compared with theoretical results. For developing a three-dimensional biomechanical model for the leg system supported by compression garment, images form computed tomography scanning methodology was used. Tensile properties of an elastane yarn as the basis for studying the compression garment’s mechanical behavior were experimentally measured and then simulated in Abaqus software as a linear viscoelastic material. The results were then applied to multi-scale modeling technique in order to simulate mechanical behavior of the knitted fabric and the compression garment thereof. Combination of both experimental and theoretical results was applied to simulate interactions between the leg and the compression garment. The results indicated that the pressure values simulated by finite element method were predicted with the maximum mean error of 19.64 % and total error mean of 12.29 % compared to experimental results. Small difference between the measured and simulated values was observed for tibia and fibula because of their low soft-tissue volume. The proposed model enables the specialists to present compression garments based on the patient’s needs and physician prescription which generate the optimal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Rohan, P. Badel, and B. Lun, Ann. Biomed. Eng., 43, 314 (2016).

    Article  Google Scholar 

  2. K. Kelly, C. Johnson, and L. Dunne, Physiol. Rep., 7, 1 (2019).

    Article  Google Scholar 

  3. F. Chassagne, J. Molimard, and R. Convert, Ann. Biomed. Eng., 44, 3096 (2016).

    Article  Google Scholar 

  4. R. Liu, X. Guo, and T. T. Lao, Text. Res. J., 87, 1121 (2017).

    Article  CAS  Google Scholar 

  5. F. Chassagne, J. Molimard, and R. Convert, Ann. Biomed. Eng., 43, 2967 (2015).

    Article  Google Scholar 

  6. S. Anand, K. Govarthanam, and D. Gazioglu, J. Text. Inst., 104, 661 (2013).

    Article  Google Scholar 

  7. Z. Jin, Y. Yan, and X. Luo, J. Fiber Bioeng. Informat., 1, 217 (2008).

    Article  Google Scholar 

  8. D. Gupta, R. Chattopadhyay, and M. Bera, Indian J. Fibre Text. Res., 36, 415 (2011).

    CAS  Google Scholar 

  9. M. Trenell, K. Rooney, and C. Sue, J. Sport Sci. Med., 5, 106 (2006).

    Google Scholar 

  10. J. Tarrier, A. Harlanda, and R. Jonesa, ISEA, 3349 (2010).

  11. X. Dai, R. Liu, Y. Li, and M. Zhang, Comput. Text., 55, 301 (2007).

    Article  Google Scholar 

  12. L. Hong, C. Dongsheng, and W. Qufu, Text. Res. J., 81, 1307 (2011).

    Article  Google Scholar 

  13. X. Zhang, K. Yeung, and Y. Li, Text. Res. J., 72, 245 (2002).

    Article  CAS  Google Scholar 

  14. Y. Li, X. Zhang, and K. Yeung, J-STAGE, 59, 12 (2003).

    Google Scholar 

  15. K. Yeung, Y. Li, and X. Zhang, J. Text. Inst., 95, 59 (2004).

    Article  Google Scholar 

  16. R. Liu, Y. Kwok, Y. Li, and T. Lao, Fiber. Polym., 7, 389 (2006).

    Article  CAS  Google Scholar 

  17. R. Dan, X. Fan, and Z. Shi, J. Text. Inst., 107, 72 (2016).

    Article  Google Scholar 

  18. H. Rodel, A. Schenk, and C. Herzberg, Int. J. Cloth. Sci. Tech., 13, 217 (2001).

    Article  Google Scholar 

  19. L. Wang, M. Felder, and J. Y. Cai, J. Fiber Bioeng. Inform.4, 15 (2011).

    Article  CAS  Google Scholar 

  20. N. Gokarneshan, Biomed. J. Sci. Tech. Res., 1, 806 (2017).

    Google Scholar 

  21. J. Rhie, Family Enviro. Res., 30, 1 (1992).

    Google Scholar 

  22. M. S. Jung and D. H. Ryu, Korean Assoc. Human Eco., 11, 79 (2002).

    Google Scholar 

  23. J. Seon S. Mee, S. Lee, and M. J. Park, Fashion Text., 2, 22 (2015).

    Article  Google Scholar 

  24. L. Wang, M. Felder, and J. Cai, J. Fiber Bioeng. Inf., 4, 15 (2011).

    Article  CAS  Google Scholar 

  25. O. Troynikov, E. Ashayeri, and M. Burton, ISEA, Procedia Eng., 2, 2823 (2010).

    Article  Google Scholar 

  26. B. Sari and N. Oglakcioglu, J. Ind. Text., 47, 1 (2016).

    Google Scholar 

  27. J. Hill, G. Howatson, and K. Someren, Br. J. Sports Med., 48, 1340 (2014).

    Article  Google Scholar 

  28. M. Datta, B. Behera, and A. Goyal, J. Text. Inst., 48, 1 (2019).

    Google Scholar 

  29. S. Ng and C. Hui, Text. Res. J., 71, 275 (2001).

    Article  CAS  Google Scholar 

  30. E. Maklewska, A. Nawrocki, and J. Ledwon, Fibres Text. East. Eur., 14, 11 (2006).

    Google Scholar 

  31. S. Vassiliadis, Indian J. Fibre Text. Res., 32, 62 (2007).

    CAS  Google Scholar 

  32. M. Abghary, H. Hassani, and R. Jafari, Fiber. Polym., 17, 795 (2016).

    Article  Google Scholar 

  33. E. Ghorbani, H. Hasani, and R. Jafari, J. Text. Inst., 110, 724 (2019).

    Article  Google Scholar 

  34. T. D. Dinh, O. Weeger, S. Kaijim, and S. K. Yeung, Compos. Part B, 148, 81 (2018).

    Article  Google Scholar 

  35. O. Weeger, A. H. Sakhaei, Y. Yi, T. Yu, H. Quek, T. L. Lee, S. Yeung, S. Kaijim, and M. L. Dunn, Appl. Compos. Mater., 25, 797 (2018).

    Article  CAS  Google Scholar 

  36. R. Hessami, A. Alamdar Yazdi, and A. Mazidi, J. Compos. Mater., 53, 3201 (2019).

    Article  Google Scholar 

  37. S. Hamedi, H. Hasani, and S. H. Dibajian, J. Compos. Mater., 51, 1887 (2017).

    Article  CAS  Google Scholar 

  38. A. Dixit, H. Singh Mali, and R. K. Misra, Procedia Eng., 68, 352 (2013).

    Article  Google Scholar 

  39. D. Liu, D. Christe, B. Shakibajahromi, D. Liu, D. Christe, B. Shakibajahromi, C. Knittel, N. Castaned, D. Breen, G. Dionc, and A. Kontsos, Inter. J. Solids Struct., 109, 101 (2017).

    Article  Google Scholar 

  40. J. Rice, S. Cowin, and J. Bowman, J. Biomech., 21, 155 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Hasani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, E., Hasani, H., Nedoushan, R.J. et al. Finite Element Modeling of the Compression Garments Structural Effect on the Pressure Applied to Leg. Fibers Polym 21, 636–645 (2020). https://doi.org/10.1007/s12221-020-9542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9542-3

Keywords

Navigation