Skip to main content
Log in

Complexation of methyl salicylate with β-cyclodextrin and its release characteristics for active food packaging

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A series of methyl salicylate (MeSA)/β-cyclodextrin (β-CD) inclusion complexes (ICs) were prepared at different MeSA concentrations by the co-precipitation method using methyl salicylate for maintaining the quality of fresh produce. The formation of IC was confirmed through FTIR, 1H NMR, TGA, and SEM measurements. Among the grades applied, IC with 1:1 grade showed the highest MeSA entrapment efficiency (59%). The release rate of MeSA from an IC was greater at higher temperature and higher relative humidity. In addition, the MeSA release from ICs of all grades followed a diffusive nature and first-order kinetics at 25 °C under all RH conditions, except at 7 °C. These results indicate that the use of a MeSA/β-CD IC in active packaging applications can effective maintain the quality of fresh produce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarca RL, Rodriguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 196: 968-975 (2016)

    Article  CAS  Google Scholar 

  • Almenar E, Del Valle V, Catala R, Gavara R. Active package for wild strawberry fruit (Fragaria vesca L.). J. Agric. Food Chem. 55: 2240-2245 (2007)

    Article  CAS  Google Scholar 

  • Assaf KI, Gabel D, Zimmermann W, Nau WM. High-affinity host–guest chemistry of large-ring cyclodextrins. Org. Biomol. Chem. 14: 7702-7706 (2016)

    Article  CAS  Google Scholar 

  • Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Keskin NOS, Kusku SI, Durgun E, Tekinay T, Uyar T. Fast-dissolving, prolonged release, and antibacterial cyclodextrin/limonene-inclusion complex nanofibrous webs via polymer-free electrospinning. J. Agric. Food Chem. 64: 7325-7334 (2016)

    Article  CAS  Google Scholar 

  • Bouchemela H, Madi F, Nouar L. DFT investigation of host–guest interactions between α-Terpineol and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 95: 247-258 (2019)

    Article  CAS  Google Scholar 

  • Cheng M, Wang J, Zhang R, Kong R, Lu W, Wang X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int. J. Biol. Macromol. 141: 259-267 (2019)

    Article  CAS  Google Scholar 

  • Crini G. A history of cyclodextrins. Chem. Rev. 114: 10940-10975 (2014)

    Article  CAS  Google Scholar 

  • Devi NKD, Rani AP, Aved MM, SaiKumar K, Kaushik J, Sowjanya V. Cyclodextrins in pharmacy—an overview. Pharmacophore 1: 155-165 (2010)

    CAS  Google Scholar 

  • Duran M, Aday MS, Zorba NND, Temizkan R, Büyükcan MB, Caner C. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food Bioprod. Process. 98: 354-363 (2016)

    Article  CAS  Google Scholar 

  • Habibi F, Ramezanian A, Rahemi M, Eshghi S, Guillén F, Serrano M, Valero D. Postharvest treatments with γ-aminobutyric acid, methyl jasmonate or methyl salicylate enhance chilling tolerance of blood orange fruit at prolonged cold storage. J. Sci. Food Agric. 99: 6408-6417 (2019)

    Article  CAS  Google Scholar 

  • Hill LE, Gomes C, Taylor TM. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci. Technol. 51:86-93 (2013)

    Article  CAS  Google Scholar 

  • Hu QD, Tang GP, Chu PK. Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Acc. Chem. Res. 47: 2017-2025 (2014)

    Article  CAS  Google Scholar 

  • Jeon SS, Lee SJ, Ganesan P, Kwak HS. Comparative study of flavor, texture, and sensory in cream cheese and cholesterol-removed cream cheese. Food Sci. Biotechnol. 21: 159-165 (2012)

    Article  CAS  Google Scholar 

  • Jin H, Yang L, Ahonen MJR, Schoenfisch MH. Nitric oxide-releasing cyclodextrins. J. Am. Chem. Soc. 140: 14178-14184 (2018)

    Article  CAS  Google Scholar 

  • Kant A, Linforth RS, Hort J, Taylor AJ. Effect of β-cyclodextrin on aroma release and flavor perception. J. Agric. Food Chem. 52: 2028-2035 (2004)

    Article  CAS  Google Scholar 

  • Li S, Purdy WC. Cyclodextrins and their applications in analytical chemistry. Chem. Rev. 92: 1457-1470 (1992)

    Article  CAS  Google Scholar 

  • Li S, Tang Y, Zhang X, Dou Y, Shen X. Preparation and characterization of diclofenac sodium β-cyclodextrin inclusion complex eye drops. J. Incl. Phenom. Macrocycl. Chem. 94: 85-94 (2019)

    Article  CAS  Google Scholar 

  • Li X, Jin Z, Wang J. Complexation of allyl isothiocyanate by α-and β-cyclodextrin and its controlled release characteristics. Food Chem. 103: 461-466 (2007)

    Article  CAS  Google Scholar 

  • Liu L, Song K-S, Li X-S, Guo Q-X. Charge-transfer interaction: a driving force for cyclodextrin inclusion complexation. J. Incl. Phenom. Macrocycl. Chem. 40: 35-39 (2001)

    Article  CAS  Google Scholar 

  • Min D, Li F, Zhang X, Shu P, Cui X, Dong L, Ren C, Meng D, Li J. Effect of methyl salicylate in combination with 1-methylcyclopropene on postharvest quality and decay caused by Botrytis cinerea in tomato fruit. J. Sci. Food Agric. 98: 3815-3822 (2018)

    Article  CAS  Google Scholar 

  • Nguyen TVA, Yoshii H. Release behavior of allyl sulfide from cyclodextrin inclusion complex of allyl sulfide under different storage conditions. Biosci. Biotechnol. Biochem. 82: 848-855 (2018)

    Article  CAS  Google Scholar 

  • Polyakov NE, Leshina TV, Konovalova TA, Hand EO, Kispert LD. Inclusion complexes of carotenoids with cyclodextrins: 1HNMR, EPR, and optical studies. Free Radical Biol. Med. 36: 872-880 (2004)

    Article  CAS  Google Scholar 

  • Rehmann L, Yoshii H, Furuta T. Characteristics of modified β-cyclodextrin bound to cellulose powder. Starch-Stärke 55: 313-318 (2003)

    Article  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD. Systemic acquired resistance. Plant Cell 8: 1809-1819 (1996)

    Article  CAS  Google Scholar 

  • Shiga H, Yoshii H, Nishiyama T, Furuta T, Forssele P, Poutanen K, Linko P. Flavor encapsulation and release characteristics of spray-dried powder by the blended encapsulant of cyclodextrin and gum arabic. Drying Technol. 19: 1385-1395 (2001)

    Article  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385: 718-721 (1997)

    Article  CAS  Google Scholar 

  • Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98: 1743-1754 (1998)

    Article  CAS  Google Scholar 

  • Szente L, Fenyvesi É, Szejtli J. Entrapment of iodine with cyclodextrins: potential application of cyclodextrins in nuclear waste management. Environ. Sci. Technol. 33: 4495-4498 (1999)

    Article  CAS  Google Scholar 

  • Szente L, Szemán J. Cyclodextrins in analytical chemistry: host–guest type molecular recognition. Anal. Chem. 85: 8024-8030 (2013)

    Article  CAS  Google Scholar 

  • Tanwar S, Barbey C, Dupont N. Experimental and theoretical studies of the inclusion complex of different linear aliphatic alcohols with cyclodextrins. Carbohydr. Polym. 217: 26-34 (2019)

    Article  CAS  Google Scholar 

  • Wang J, Cao Y, Sun B, Wang C. Physicochemical and release characterisation of garlic oil-β-cyclodextrin inclusion complexes. Food Chem. 127: 1680-1685 (2011)

    Article  CAS  Google Scholar 

  • Yoshii H, Furuta T, Yasunishi A, Hirano H. Minimum number of water molecules required for inclusion of d-limonene in the cyclodextrin cavity. J. Biochem. 115: 1035-1037 (1994)

    Article  CAS  Google Scholar 

  • Yuan C, Jin Z, Xu X. Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr. Polym. 89: 492-496 (2012)

    Article  CAS  Google Scholar 

  • Zhang W, Li X, Yu T, Yuan L, Rao G, Li D, Mu C. Preparation, physicochemical characterization and release behavior of the inclusion complex of trans-anethole and β-cyclodextrin. Food Res. Int. 74: 55-62 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through the Agricultural Export Business Model Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA, 319091-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Suk Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Dey, K.P. & Lee, Y.S. Complexation of methyl salicylate with β-cyclodextrin and its release characteristics for active food packaging. Food Sci Biotechnol 29, 917–925 (2020). https://doi.org/10.1007/s10068-020-00749-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-020-00749-z

Keywords

Navigation