Skip to main content
Log in

Extraction of carbon from waste cotton to efficiently carry tin oxide anodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The difference in melting and boiling points between different materials is cleverly used, which the surface of tin oxide is coated with manganese oxide as a buffer layer, thereby suppressing the volume expansion. Considering that Li2O deposits will be generated during charge–discharge, which is not conducive to lithium ion insertion and causes irreversible capacity loss. Extraction of bio-carbon materials (BC) from waste cotton. The bio-carbon materials (BC) retains intact plant fibers and can effectively store electrolytes, improve lithium ion transmission rate, ensure electron conduction efficiency, and is also an excellent SnO2–Mn materials host. The SnO2–Mn@BC batteries prepared by combining the bio-carbon materials (BC) with the SnO2–Mn materials, which has excellent electrochemical performance, which the primary discharge specific capacity of electrode reached 2021.23mAh·g−1(current density of 100 mAh·g−1). After 100 cycles, the specific discharge capacity still maintained above 768.14 mAh·g−1 with a coulombic efficiency of 99.25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Zhou, L.-J. Wan, Y.-G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071

    Article  CAS  Google Scholar 

  2. A. Jahel, C.M. Ghimbeu, L. Monconduit, C. Vix-Guterl, Confined ultrasmall SnO2 particles in micro/mesoporous carbon as an extremely long cycle-life anode material for Li-ion batteries. Adv. Energy Mater. 4(11), 1400025 (2014)

    Article  Google Scholar 

  3. Y. Wang, H. Zeng, J. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overla-yers. Adv. Mater. 18(5), 645 (2006)

    Article  CAS  Google Scholar 

  4. L. Li, X. Yin, S. Liu et al., Electrospun porous SnO2, nanotubes as highcapacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383 (2010)

    Article  CAS  Google Scholar 

  5. J.S. Chen, L.C. Yan, Y.T. Chen et al., SnO2 nanoparticles with controlledcarbon nanocoating as high-capacity anode materials for lithiu-m-ion batteries. J. Phys. Chem. C 113(47), 20504 (2009)

    Article  CAS  Google Scholar 

  6. H.-X. Zhang, C. Feng, Y.-C. Zhai, K.-L. Jiang, Q.-Q. Li, S.-S. Fan, Adv. Mater. 21, 2299 (2009)

    Article  CAS  Google Scholar 

  7. Z. Chen, M. Zhou, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 2, 95 (2012)

    Article  CAS  Google Scholar 

  8. J.S. Chen, L.A. Archer, X.W. Lou, J. Mater. Chem. 21, 9912 (2011)

    Article  CAS  Google Scholar 

  9. H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanoscale 4, 2526 (2012)

    Article  CAS  Google Scholar 

  10. X.W. Lou, J.S. Chen, P. Chen, L.A. Archer, Chem. Mater. 21, 2868 (2009)

    Article  CAS  Google Scholar 

  11. D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.C. Jumas, J.M. Tarascon, J. Mater. Chem. 17, 3759 (2007)

    Article  CAS  Google Scholar 

  12. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H.Y. Fan, L.A. Qi, A. Kushima, J. Li, Science 330, 1515 (2010)

    Article  CAS  Google Scholar 

  13. X. Zhou, L.J. Wan, Y. Guo, Binding SnO2, nanocrystals in nitrogendoped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152 (2013)

    Article  CAS  Google Scholar 

  14. X. Liu, P. Xu, X. Li, Y. Peng, Z. Le, Assembly of mesoporous SnO2 spheres and carbon nanotubes network as a high-performance anode for lithium-ion batteries. J. Mater. Sci. 53(22), 15621–15630 (2018). https://doi.org/10.1007/s10853-018-2727-0

    Article  CAS  Google Scholar 

  15. C. He, Y. Xiao, H. Dong, Y. Liu, M. Zheng, K. Xiao, X. Liu, H. Zhang, B. Lei, Mosaicstructured SnO2@C porous picrospheres for high-performance supercapacitor electrode materials. Electrochim. Acta 142, 157–166 (2014)

    Article  CAS  Google Scholar 

  16. Y. Liang, W. Zhang, D. Wu, Q.-Q. Ni, M.Q. Zhang, Interface engineering of carbon-based nanomaterials for advanced electrochemical energy storage. Adv. Mater. Interfaces 5(14), 1800430 (2018). https://doi.org/10.1002/admi.201800430

    Article  CAS  Google Scholar 

  17. B. Zhao, G. Zhang, J. Song et al., Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim. Acta 56(21), 7340–7346 (2011)

    Article  CAS  Google Scholar 

  18. B. Zhao, Z. Wang, S. Wang et al., Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. Nanoscale 10(34), 16116–16126 (2018)

    Article  CAS  Google Scholar 

  19. D. Song, S. Wang, R. Liu et al., Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 478, 290–298 (2019)

    Article  CAS  Google Scholar 

  20. Y. Jiang, Y. Wan, W. Jiang et al., Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles. Chem. Eng. J. 367, 45–54 (2019)

    Article  CAS  Google Scholar 

  21. Z. Wang, D. Song, J. Si et al., One-step hydrothermal reduction synthesis of tiny Sn/SnO2 nanoparticles sandwiching between spherical graphene with excellent lithium storage cycling performances. Electrochim. Acta 292, 72–80 (2018)

    Article  CAS  Google Scholar 

  22. B. Zhao, H. Zhuang, Y. Yang et al., Composition-dependent lithium storage performances of SnS/SnO2 heterostructures sandwiching between spherical graphene. Electrochim. Acta 300, 253–262 (2019)

    Article  CAS  Google Scholar 

  23. S. Yang, W.B. Yue, J. Zhu, Y. Ren, X.J. Yang, Adv. Funct. Mater. 23, 3570 (2013)

    Article  CAS  Google Scholar 

  24. B. Xu, X. Guan, L.Y. Zhang, X. Liu, Z. Jiao, X. Liu et al., A simple route to preparing γ-Fe2O3/RGO composite electrode materials for lithium ion batteries. J. Mater. Chem. A 6(9), 4048–4054 (2018). https://doi.org/10.1039/c7ta10052c

    Article  CAS  Google Scholar 

  25. V. Di Castro, G. Polzonetti, XPS study of MnO oxidation. J. Electron Spectrosc. Relat. Phenom. 48(1), 117–123 (1989)

    Article  Google Scholar 

  26. J.M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville, J.M. Gilles, Phys. Rev. B 46, 2460 (1992)

    Article  CAS  Google Scholar 

  27. X. Yuan, H. Liu, J. Zhang, Lithium-Ion Batteries: Advanced Materials and Technologies (CRC Press, Boca Raton, 2011)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Sun, X., Li, R. et al. Extraction of carbon from waste cotton to efficiently carry tin oxide anodes. J Mater Sci: Mater Electron 31, 5434–5440 (2020). https://doi.org/10.1007/s10854-020-03106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03106-2

Navigation