Skip to main content
Log in

Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach

  • Original Research
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Molecular phylogenetic studies of cultures derived from some specimens of plant-inhabiting Sordariomycetes using ITS, LSU, rpb2 and tub2 DNA sequence data revealed close affinities to strains of Muscodor. The taxonomy of this biotechnologically important genus, which exclusively consists of endophytes with sterile mycelia that produce antibiotic volatile secondary metabolites, was based on a rather tentative taxonomic concept. Even though it was accommodated in Xylariaceae, its phylogenetic position had so far remained obscure. Our phylogeny shows that Muscodor species have affinities to the xylarialean genera Emarcea and Induratia, which is corroborated by the fact that their sexual states produce characteristic apiospores. These data allow for the integration of Muscodor in Induratia, i.e. the genus that was historically described first. The multi-locus phylogenetic tree clearly revealed that a clade comprising Emarcea and Induratia forms a monophylum separate from representatives of Xylariaceae, for which we propose the new family Induratiaceae. Divergence time estimations revealed that Induratiaceae has been diverged from the Xylariaceae + Clypeosphaeriaceae clade at 93 (69–119) million years ago (Mya) with the crown age of 61 (39–85) Mya during the Cretaceous period. The ascospore-derived cultures were studied for the production of volatile metabolites, using both, dual cultures for assessment of antimicrobial effects and extensive analyses using gas chromatography coupled with mass spectrometry (GC–MS). The antimicrobial effects observed were significant, but not as strong as in the case of the previous reports on Muscodor species. The GC–MS results give rise to some doubt on the validity of the previous identification of certain volatiles. Many peaks in the GC–MS chromatograms could not be safely identified by database searches and may represent new natural products. The isolation of these compounds by preparative chromatography and their subsequent characterisation by nuclear magnetic resonance (NMR) spectroscopy or total synthesis will allow for a more concise identification of these volatiles, and they should also be checked for their individual contribution to the observed antibiotic effects. This will be an important prerequisite for the development of biocontrol strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bitzer J, Læssøe T, Fournier J, Kummer V, Decock C, Tichy HV, Piepenbring M, Peršoh D, Stadler M (2008) Affinities of Phylacia and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. Mycol Res 112:251–270

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Feng XX, Xia CY, Kong DD, Qi ZY, Liu F, Chen D, Lin FC, Zhang CL (2019) The phylogenetic position of the genus Muscodor and the description of a new Muscodor species. Mycosphere 10:187–201

    Article  CAS  Google Scholar 

  • Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Divers 66:1–36

    Article  Google Scholar 

  • Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4:133–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Guarro J, Hernández-Restrepo M, Sutton DA, Acharya K, Barber PA, Boekhout T, Dimitrov RA, Dueñas M, Dutta AK, Gené J, Gouliamova DE, Groenewald M, Lombard L, Morozova OV, Sarkar J, Smith MT, Stchigel AM, Wiederhold NP, Alexandrova AV, Antelmi I, Armengol J, Barnes I, Cano-Lira JF, Castañeda Ruiz RF, Contu M, Courtecuisse PR, da Silveira AL, Decock CA, de Goes A, Edathodu J, Ercole E, Firmino AC, Fourie A, Fournier J, Furtado EL, Geering AD, Gershenzon J, Giraldo A, Gramaje D, Hammerbacher A, He XL, Haryadi D, Khemmuk W, Kovalenko AE, Krawczynski R, Laich F, Lechat C, Lopes UP, Madrid H, Malysheva EF, Marín-Felix Y, Martín MP, Mostert L, Nigro F, Pereira OL, Picillo B, Pinho DB, Popov ES, Rodas Peláez CA, Rooney-Latham S, Sandoval-Denis M, Shivas RG, Silva V, Stoilova-Disheva MM, Telleria MT, Ullah C, Unsicker SB, van der Merwe NA, Vizzini A, Wagner HG, Wong PT, Wood AR, Groenewald JZ (2015) Fungal planet description sheets: 320–370. Persoonia 34:67–266

    Article  Google Scholar 

  • Dai DQ, Bahkali AH, Li QR, Bhat DJ, Wijayawardene NN, Li WJ, Chukeatirot E, Zhao RL, Xu JC, Hyde KD (2014) Vamsapriya (Xylariaceae) re-described, with two new species and molecular sequence data. Cryptogam Mycol 35:339–357

    Article  Google Scholar 

  • Dai DQ, Jiang HB, Tang LZ, Bhat DJ (2016) Two new species of Arthrinium (Apiosporaceae, Xylariales) associated with bamboo from Yunnan, China. Mycosphere 7:1332–1345

    Article  Google Scholar 

  • Daisy B, Strobel G, Ezra D, Castillo U, Baird G, Hess WM (2002) Muscodor vitigenus anam. sp. nov., an endophyte from Paullinia paullinioides. Mycotaxon 84:39–50

    Google Scholar 

  • Daranagama DA, Camporesi E, Tian Q, Liu X, Chamyuang S, Stadler M, Hyde KD (2015) Anthostomella is polyphyletic comprising several genera in Xylariaceae. Fungal Divers 73:203–238

    Article  Google Scholar 

  • Daranagama DA, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samarakoon MC, Mckenzie EHC, Jayasiri SC, Tibpromma S, Bhat JD, Liu XZ, Stadler M (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers 88:1–165

    Article  Google Scholar 

  • Dickschat JS (2017) Fungal volatiles–a survey from edible mushrooms to moulds. Nat Prod Rep 34:310–328

    Article  CAS  PubMed  Google Scholar 

  • Dickschat J, Wang T, Stadler M (2018) Volatiles from the xylarialean fungus Hypoxylon invadens. Beilstein J Org Chem 14:734–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doilom M, Manawasinghe IS, Jeewon R, TibprommaS Jayawardena RS, Hongsanan S, Meepol W, Lumyong S, Jones EBG, Hyde KD (2017) Can ITS sequence data identify fungal endophytes from cultures? A case study from Rhizophora apiculata. Mycosphere 8:1869–1892

    Article  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and BEAST 1.7. Mol Biol 29:1969–1973

    Article  CAS  Google Scholar 

  • Duong LM, Lumyong S, Hyde KD, Jeewon R (2004) Emarcea castanopsidicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences. Stud Mycol 50:253–260

    Google Scholar 

  • Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  • Fournier J, Flessa F, Peršoh D, Stadler M (2011) Three new Xylaria species from southwestern Europe. Mycol Prog 10:33–52

    Article  Google Scholar 

  • González MC, Anaya AL, Glenn AE, Macías-Rubalcava ML, Hernández-Bautista BE, Hanlin RT (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372

    Article  Google Scholar 

  • Hall TA (2004) BioEdit Sequence Alignment Editor 7.0.1. Isis Pharmaceuticals, Carlsbad

    Google Scholar 

  • Hawksworth DL, Hibbett DS, Kirk PM, Lücking R (2016) (308–310) Proposals to permit DNA sequence data to serve as types of names of fungi. Taxon 65:899–900

    Article  Google Scholar 

  • Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35:992–1014

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Cubero LC, Ampofo P, Montes JM, Voegele RT (2017) Identification of pathogenic fungi and preliminary screening for resistance in Jatropha curcas L. germplasm. Eur J Plant Pathol 149:325–336

    Article  CAS  Google Scholar 

  • Hongsanan S, Hyde KD, Bahkali AH, Camporesi E, Chomnunti P, Ekanayaka H, Gomes AAM, Hofstetter V, Jones EBG, Pinho DB, Pereira OL, Tian Q, Wanasinghe DN, Xu JC, Buyck B (2015) Fungal biodiversity profiles 11–20. Cryptogamie Mycol 36:355–380

    Article  Google Scholar 

  • Hongsanan S, Jeewon R, Purahong W, Xie N, Liu JK, Jayawardena RS, Ekanayaka AH, Dissanayake A, Raspé O, Hyde KD, Stadler M, Peršoh D (2018) Can we use environmental DNA as holotypes? Fungal Divers 92:1–30

    Article  Google Scholar 

  • Hsieh HM, Lin CR, Fang MJ, Rogers JD (2010) Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. Mol Phylogenet Evol 54:957–969

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hutchings ML, Hiller DA, Berro J, Strobel SA (2017) Mycofumigation through production of the volatile DNA methylating agent N-methyl-N-nitrosoisobutyramide by fungi in the genus Muscodor. J Biol Chem 292:7358–7371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyde KD (1995) Fungi from palms. XVIII. Appendicospora coryphae, a new name for Apiosporella coryphae. Sydowia 47:31–37

    Google Scholar 

  • Hyde KD, Fröhlich J (1997) A new species of Appendicospora from Hong Kong. Mycoscience 38:395–397

    Article  Google Scholar 

  • Hyde KD, Fröhlich J, Taylor JE (1998) Fungi from palms. XXXVI. Reflections on unitunicate ascomycetes with apiospores. Sydowia 50:21–80

    Google Scholar 

  • Hyde KD, Maharachchikumbura SS, Hongsanan S, Samarakoon MC, Lücking R, Pem D, Harishchandra D, Jeewon R, Zhao RL, Xu JC, Liu JK (2017) The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers 84:1–23

    Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Deping Wei D, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi, 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

    Article  Google Scholar 

  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes. Mycosphere 11:305–1059

    Google Scholar 

  • Jaklitsch WM, Fournier J, Rogers JD, Voglmayr H (2014) Phylogenetic and taxonomic revision of Lopadostoma. Persoonia 32:52–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaklitsch WM, Gardiennet A, Voglmayr H (2016) Resolution of morphology-based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia 37:82–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasiri SC, Hyde KD, Abd-Elsalam KA, Abdel-Wahab MA, Ariyawansa HA, Bhat J, Buyck B, Dai YC, Ertz D, Hidayat I, Jeewon R, Jones EBG, Karunarathna SC, Kirk P, Lei C, Liu JK, Maharachchikumbura SSN, McKenzie E, Ghobad-Nejhad M, Nilsson H, Pang KL, Phookamsak R, Rollins AW, Romero AI, Stephenson S, Suetrong S, Tsui CKM, Vizzini A, Wen TC, de Silva NI, Promputtha I, Kang JC (2015) The Facesoffungi database: fungal names linked with morphology, molecular and human attributes. Fungal Divers 74:3–18

    Article  Google Scholar 

  • Jeewon R, Wanasinghe DN, Rampadaruth S, Puchooa D, Zhou LG, Liu AR, Wang HK (2017) Nomenclatural and identification pitfalls of endophytic mycota based on DNA sequence analyses of ribosomal and protein genes phylogenetic markers: a taxonomic dead end? Mycosphere 8:1802–1817

    Article  Google Scholar 

  • Jiang HB, Phookamsak R, Bhat DJ, Khan S, Bahkali A, Elgorban A, Hyde KD (2018) Vamsapriya yunnana, a new species of Vamsapriya (Xylariaceae, Xylariales) associated with bamboo from Yunnan, China. Phytotaxa 356:61–70

    Article  Google Scholar 

  • Johnston PR, Rogers JD, Park D, Martin NA (2016) Entalbostroma erumpens gen. et sp. nov. (Xylariaceae) from Phormium in New Zealand. Mycotaxon 131:765–771

    Article  Google Scholar 

  • Ju YM, Rogers JD (1996) A revision of the genus Hypoxylon. Mycologia Memoir No. 20. APS Press, St. Paul, p 365

  • Kaddes A, Fauconnier ML, Sassi K, Nasraoui B, Jijakli MH (2019) Endophytic fungal volatile compounds as solution for sustainable agriculture. Molecules 24:1065

    Article  CAS  PubMed Central  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Koukol O, Kelnarová I, Černý K (2015) Recent observations of sooty bark disease of sycamore maple in Prague (Czech Republic) and the phylogenetic placement of Cryptostroma corticale. For Pathol 45:21–27

    Article  Google Scholar 

  • Kudalkar P, Strobel G, Riyaz-Ul-Hassan S, Geary B, Sears J (2012) Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53:319–325

    Article  CAS  Google Scholar 

  • Kuhnert E, Fournier J, Peršoh D, Luangsa-ard JJD, Stadler M (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers 64:181–203

    Article  Google Scholar 

  • Kuhnert E, Sir EB, Lambert C, Hyde KD, Hladki AI, Romero AI, Rohde M, Stadler M (2017) Phylogenetic and chemotaxonomic resolution of the genus Annulohypoxylon (Xylariaceae) including four new species. Fungal Divers 85:1–43

    Article  Google Scholar 

  • Lambert C, Wendt L, Hladki A, Stadler M, Sir EB (2019) Hypomontagnella (Hypoxylaceae): a new genus segregated from Hypoxylon by a polyphasic taxonomic approach. Mycol Prog 18:187–201

    Article  Google Scholar 

  • Lauterbach L, Wang T, Stadler M, Dickschat JS (2019) Volatiles from the ascomycete Daldinia cf. childiae (Hypoxylaceae), originating from China. Med Chem Comm 10:726–734

    Article  CAS  Google Scholar 

  • Li XF, Lu T, Lu BS, Hyde KD (2009) Emarcea rostrispora nom. nov. (Xylariaceae, Ascomycota) on wood from Taiwan. Mycosystema 28:151–153

    Google Scholar 

  • Li QR, Kang JC, Hyde KD (2015) Two new species of the genus Collodiscula (Xylariaceae) from China. Mycol Prog 14:52

    Article  Google Scholar 

  • Liarzi O, Bar E, Lewinsohn E, Ezra D (2016a) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS ONE 11:e0168242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liarzi O, Bucki P, Miyara SB, Ezra D (2016b) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS ONE 11:e0168437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Outline of Ascomycota 2009. Myconet 14:1–64

    Google Scholar 

  • Maharachchikumbura SN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, Dayarathne MC, Huang SK, Norphanphoun C, Senanayake IC, Perera RH, Shang QJ, Xiao Y, D’souza MJ, Hongsanan S, Jayawardena RS, Daranagama DA, Konta S, Goonasekara ID, Zhuang WY, Jeewon R, Phillips AJL, Abdel-Wahab MA, Al-Sadi AM, Bahkali AH, Boonmee S, Boonyuen N, Cheewangkoon R, Dissanayake AJ, Kang J, Li QR, Liu JK, Liu XZ, Liu ZY, Luangsa-ard J, Pang KL, Phookamsak R, Promputtha I, Suetrong S, Stadler M, Wen T (2016) Families of Sordariomycetes. Fungal Divers 79:1–317

    Article  Google Scholar 

  • May TW, Redhead SA, Lombard L, Rossman AY (2018) XI International Mycological Congress: report of Congress action on nomenclature proposals relating to fungi. IMA Fungus 9:XXII–XXVII

    Article  Google Scholar 

  • Meshram V, Kapoor N, Saxena S (2013) Muscodor kashayum sp. nov.—a new volatile anti-microbial producing endophytic fungus. Mycology 4:196–204

    Article  PubMed  CAS  Google Scholar 

  • Meshram V, Saxena S, Kapoor N (2014) Muscodor strobelii, a new endophytic species from south India. Mycotaxon 128:93–104

    Article  Google Scholar 

  • Meshram V, Gupta M, Saxena S (2015) Muscodor ghoomensis and Muscodor indica: new endophytic species based on morphological features, molecular and volatile organic analysis from northeast India. Sydowia 67:133–146

    Google Scholar 

  • Meshram V, Kapoor N, Chopra G, Saxena S (2017) Muscodor camphora, a new record from Cinnamomum camphora. Mycosphere 8:568–582

    Article  Google Scholar 

  • Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Mol Phylogenet Evol 35:60–75

    Article  CAS  PubMed  Google Scholar 

  • Mitchell A, Strobel G, Hess W, Vargas P, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    Article  CAS  PubMed  Google Scholar 

  • Monteiro MCP, Alves NM, de Queiroz MV, Pinho DB, Pereira OL, de Souza SMC, Cardoso PG (2017) Antimicrobial activity of endophytic fungi from coffee plants. Biosci J 33:2

    Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Article  Google Scholar 

  • Niranjan M, Sarma VV (2018) Twelve new species of ascomycetous fungi from Andaman Islands, India. Kavaka 50:84–97

    Google Scholar 

  • Nylander JAA (2004) MrModeltest 2.0. Program distributed by author. Evolutionary Biology Centre, Uppsala University

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116

    Article  PubMed  Google Scholar 

  • Pažoutová S, Srutka P, Holuša J, Chudickova M, Kolarik M (2010) The phylogenetic position of Obolarina dryophila (Xylariales). Mycol Prog 9:501–507

    Article  Google Scholar 

  • Pažoutová S, Follert S, Bitzer J, Keck M, Surup F, Šrůtka P, Holuša J, Stadler M (2013) A new endophytic insect-associated Daldinia species, recognised from a comparison of secondary metabolite profiles and molecular phylogeny. Fungal Divers 60:107–123

    Article  Google Scholar 

  • Pena LC, Jungklaus GH, Savi DC, Ferreira-Maba L, Servienski A, Maia BH, Annies V, Galli-Terasawa LV, Glienke C, Kava V (2019) Muscodor brasiliensis sp. nov. produces volatile organic compounds with activity against Penicillium digitatum. Microbiol Res 221:28–35

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2012) FigTree: Tree figure drawing tool 2006–2012, version 1.4.0. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh

    Google Scholar 

  • Rambaut A, Suchard M, Drummond A (2013) Tracer, v1.6. http://tree.bio.ed.ac.uk/software/tracer/

  • Rinkel J, Babczyk A, Wang T, Stadler M, Dickschat JS (2018) Volatiles from the hypoxylaceous fungi Hypoxylon griseobrunneum and Hypoxylon macrocarpum. Beilstein J Org Chem 14:2974–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S, Ariyawansa HA, Maharachchikumbura SSN, Daranagama DA, Stadler M, Mapook A (2016) Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7:1746–1761

    Article  Google Scholar 

  • Samuels GJ, Muller E, Petrini O (1987) Studies in the Amphisphaeriaceae (sensu lato). 3. New species of Monographella and Pestalosphaeria, and two new genera. Mycotaxon 28:473–499

    Google Scholar 

  • Saxena S, Meshram V, Kapoor N (2014) Muscodor darjeelingensis, a new endophytic fungus of Cinnamomum camphora collected from northeastern Himalayas. Sydowia 66:55–67

    Google Scholar 

  • Saxena S, Meshram V, Kapoor N (2015) Muscodor tigerii sp. nov. Volatile antibiotic producing endophytic fungus from the northeastern Himalayas. Ann Microbiol 65:47–57

    Article  CAS  Google Scholar 

  • Seifert KA, Gams W (2011) The genera of Hyphomycetes–2011 update. Persoonia 27:119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senanayake IC, Maharachchikumbura SSN, Hyde KD, Bhat JD, Jones EBG, McKenzie HCE, Dai DQ, Daranagama DA, Dayarathne MC, Goonasekara ID, Konta S, Li WJ, Shang QJ, Stadler M, Wijayawardene NN, Xiao YP, Norphanphoun C, Li Q, Liu XZ, Bahkali AH, Kang JC, Wang Y, Chi T, Wendt Lucile Wen, Xu JC (2015) Towards unravelling relationships in Xylariomycetidae (Sordariomycetes). Fungal Divers 73:73–144

    Article  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12:335–337

    Article  Google Scholar 

  • Sir EB, Becker K, Lambert C, Bills GF, Kuhnert E (2019) Observations on Texas hypoxylons, including two new Hypoxylon species and widespread environmental isolates of the H. croceum complex identified by a polyphasic approach. Mycologia 111:832–856

    Article  CAS  PubMed  Google Scholar 

  • Siri-udom S, Suwannarach N, Lumyong S (2016) Existence of Muscodor vitigenus, M. equiseti and M. heveae sp. nov. in leaves of the rubber tree (Hevea brasiliensis Müll. Arg.), and their biocontrol potential. Ann Microbiol 66:437–448

    Article  Google Scholar 

  • Sopalun K, Strobel GA, Hess WM, Worapong J (2003) A record of Muscodor albus, an endophyte from Myristica fragrans, in Thailand. Mycotaxon 88:239–247

    Google Scholar 

  • Spatafora JW, Sung GH, Johnson D, Hesse C, O’Rourke B, Serdani M, Spotts R, Lutzoni F, Hofstetter V, Miadlikowska J, Reeb V (2006) A five-gene phylogeny of Pezizomycotina. Mycologia 98:1018–1028

    Article  CAS  PubMed  Google Scholar 

  • Stadler M, Hellwig V (2005) Chemotaxonomy of the Xylariaceae and remarkable bioactive compounds from Xylariales and their associated asexual stages. Recent Res Dev Phytochem 9:41–93

    CAS  Google Scholar 

  • Stadler M, Kuhnert E, Persŏh D, Fournier J (2013) The Xylariaceae as model example for a unified nomenclature following the ‘‘One fungus-one name’’ (1F1N) concept. Mycology 4:5–21

    CAS  Google Scholar 

  • Stadler M, Hawksworth DL, Fournier J (2014a) The application of the name Xylaria hypoxylon, based on Clavaria hypoxylon of Linnaeus. IMA Fungus 5:57–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadler M, Læssøe T, Fournier J, Decock C, Schmieschek B, Tichy HV, Peršoh D (2014b) A polyphasic taxonomy of Daldinia (Xylariaceae). Stud Mycol 77:1–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Stadler M, Lambert C, Wibberg D, Kalinowski J, Cox RJ, Kolarik M, Kuhnert E (2020) Intragenomic polymorphisms in the ITS region of high quality genomes of the Hypoxylaceae (Xylariales, Ascomycota). Mycol Prog 19:235–245

    Article  Google Scholar 

  • Strobel G (2006) Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33:514–522

    Article  CAS  PubMed  Google Scholar 

  • Strobel G (2011) Muscodor species-endophytes with biological promise. Phytochem Rev 10:165–172

    Article  CAS  Google Scholar 

  • Strobel GA, Dirske E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN (2007) Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153:2613–2620

    Article  CAS  PubMed  Google Scholar 

  • Suwannarach N, Bussaban B, Hyde KD, Lumyong S (2010) Muscodor cinnamomi, a new endophytic species from Cinnamomum bejolghota. Mycotaxon 114:15–23

    Article  Google Scholar 

  • Suwannarach N, Kumla J, Bussaban B, Hyde KD, Matsui K (2013) Molecular and morphological evidence support four new species in the genus Muscodor from northern Thailand. Ann Microbiol 63:1341–1351

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tang AMC, Jeewon R, Hyde KD (2009) A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Divers 34:127–155

    Google Scholar 

  • Tibpromma S, Daranagama DA, Boonmee S, Promputtha I, Nontachaiyapoom S, Hyde KD (2017) Anthostomelloides krabiensis gen. et sp. nov. (Xylariaceae) from Pandanus odorifer (Pandanaceae). Turk J Bot 41:107–116

    Article  CAS  Google Scholar 

  • Trouillas FP, Hand FP, Inderbitzin P, Gubler WD (2015) The genus Cryptosphaeria in the western United States: taxonomy, multilocus phylogeny and a new species C. multicontinentalis. Mycologia 107:1304–1313

    Article  CAS  PubMed  Google Scholar 

  • U’Ren JM, Miadlikowska J, Zimmerman NB, Lutzoni F, Stajich JE, Arnold AE (2016) Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol 98:210–232

    Article  PubMed  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voglmayr H, Friebes G, Gardiennet A, Jaklitsch WM (2018) Barrmaelia and Entosordaria in Barrmaeliaceae (fam. nov., Xylariales) and critical notes on Anthostomella-like genera based on multigene phylogenies. Mycol Prog 17:155–177

    Article  PubMed  Google Scholar 

  • Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, Crous PW, Samson RA (2016a) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol 84:145–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Lombard L, Groenewald JZ, Li J, Videira SI, Samson RA, Liu XZ, Crous PW (2016b) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36:83–133

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Mohr KI, Stadler M, Dickschat J (2018) Volatiles from the tropical ascomycete Daldinia clavata (Hypoxylaceae, Xylariales). Beilstein J Org Chem 14:135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Jennifer Luangsa-ard J, Srikitikulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol Prog 17:115–154

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lucking R, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch HT, Timdal E, Ertz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian Q, Castanéda-Ruiz RF, Bahkali AH, Pang KL, Tanaka K, Dai DQ, Sakayaroj J, Hujslová M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinghe DN, Sharma BO, Gaikwad S, Pandit G, Zucconi L, Onofri S, Egidi E, Raja HA, Kodsueb R, Caceres MES, Perez-Ortega S, Fiuza PO, Monteiro JS, Vasilyeva LN, Shivas RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfliegler WP, Sharma G, Oset M, Abdel MA, Takamatsu S, Bensch K, Silva NI, De Kesel A, Karunarathna A, Boonmee S, Pfister DH, Lu YZ, Luo ZL, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakoon MC, Zeng XY, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana RS, Perera PH, Tang LZ, Phukhamsakda C, Hernández-Restrepo M, Ma XY, Tibpromma S, Gusmao LFP, Weerahewa D, Karunarathna SC (2017) Notes for genera: Ascomycota. Fungal Divers 86:1–594

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota: 2017. Fungal Divers 88:167–263

    Article  Google Scholar 

  • Worapong J, Strobel G, Ford EJ, Li JY, Baird G, Hess WM (2001) Muscodor albus anam. gen. et sp nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon 79:67–79

    Google Scholar 

  • Worapong J, Strobel GA, Daisy B, Castillo UF, Baird G, Hess WM (2002) Muscodor roseus anam. sp. nov., an endophyte from Grevillea pteridifolia. Mycotaxon 81:463–475

    Google Scholar 

  • Yuan ZL, Su ZZ, Mao LJ, Peng YQ, Yang GM, Lin FC, Zhang CL (2011) Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (Xylariaceae). J Microbiol 49:15–23

    Article  CAS  PubMed  Google Scholar 

  • Zamora JC, Svensson M, Kirschner R, Olariaga I et al (2018) Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus 9:167–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung GH (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M (2010) Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol 114:797–808

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. Genomics 3:1–15

    Article  Google Scholar 

  • Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Anke Skiba for expert technical assistance, Yasmina Marin Felix for help with the microscopic studies of the Induratia SMH specimen and Konstanze Bensch (Mycobank) and Roland Kirschner (Taiwan) for valuable advice on how to handle the difficult nomenclatural problems that were created by the mycologists who had previously erected invalid species in Muscodor. Sabine Huhndorf is thanked for the use of her specimen (SMH 1255). Kevin D. Hyde would like to thank the Thailand Research Fund for a grant entitled “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Sub region (grant no: RDG6130001) for supporting this study. Jian-Kui (Jack) Liu thanks the Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou province (Grant No. U1812401). This research work was supported by Chiang Mai University. Milan C. Samarakoon is grateful to the Mushroom Research Foundation (MRF), Chiang Rai, Thailand for providing a Postgraduate Scholarship. Mark Brönstrup thanks for support from EMBRIC, the EU-funded European Marine Biological Research Infrastructure Cluster [654008]. The authors extend their gratitude to Sajeewa S.N. Maharachchikumbura, Eric H.C. McKenzie, Saranyaphat Boonmee, Shaun Pennycook, Dinushani A. Daranagama, Nimali I. de Silva, Binu Samarakoon, Wilawan Punyaboon and Sornram Sukpisit for their valuable suggestions and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Hyde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samarakoon, M.C., Thongbai, B., Hyde, K.D. et al. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer to Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. Fungal Diversity 101, 177–210 (2020). https://doi.org/10.1007/s13225-020-00443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-020-00443-9

Keywords

Navigation