Skip to main content
Log in

Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a phase field based MITC4+ shell element formulation to simulate fracture propagation in thin shell structures. The employed MITC4+ approach renders the element shear- and membrane- locking free, hence providing high-fidelity fracture simulations in planar and curved topologies. To capture the mechanical response under bending-dominated fracture, a crack-driving force description based on the maximum strain energy density through the shell-thickness is considered. Several numerical examples simulating fracture in flat and curved shell structures are presented, and the accuracy of the proposed formulation is examined by comparing the predicted critical fracture loads against analytical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Aldakheel F, Hudobivnik B, Hussein A, Wriggers P (2018) Phase-field modeling of brittle fracture using an efficient virtual element scheme. Comput Methods Appl Mech Eng 341:443–466

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambati M, Gerasimov T, De Lorenzis L (2015a) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambati M, Gerasimov T, De Lorenzis L (2015b) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57(1):149–167

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun Pure Appl Math 43(8):999–1036

    Article  MathSciNet  MATH  Google Scholar 

  7. Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M (2014) Phase-field modeling of fracture in linear thin shells. Theor Appl Fract Mech 69:102–109

    Article  Google Scholar 

  8. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57(8):1209–1229

    Article  MATH  Google Scholar 

  9. Areias P, Rabczuk T (2013) Finite strain fracture of plates and shells with configurational forces and edge rotations. Int J Numer Methods Eng 94(12):1099–1122

    Article  MathSciNet  MATH  Google Scholar 

  10. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129

    Article  MathSciNet  Google Scholar 

  11. Bathe KJ (2006) Finite element procedures. Klaus-Jurgen Bathe, Berlin

    MATH  Google Scholar 

  12. Bathe KJ, Dvorkin EN (1986) A formulation of general shell elementsthe use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22(3):697–722

    Article  MATH  Google Scholar 

  13. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MATH  Google Scholar 

  14. Belytschko T, Leviathan I (1994) Physical stabilization of the 4-node shell element with one point quadrature. Comput Methods Appl Mech Eng 113(3–4):321–350

    Article  MATH  Google Scholar 

  15. Belytschko T, Tsay CS (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Methods Eng 19(3):405–419

    Article  MATH  Google Scholar 

  16. Borden MJ, Verhoosel CV, Scott MA, Hughes TJ, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  17. Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166

    Article  MathSciNet  MATH  Google Scholar 

  18. Bouchard PO, Bay F, Chastel Y, Tovena I (2000) Crack propagation modelling using an advanced remeshing technique. Comput Methods Appl Mech Eng 189(3):723–742

    Article  MATH  Google Scholar 

  19. Bouchard PO, Bay F, Chastel Y (2003) Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Comput Methods Appl Mech Eng 192(35):3887–3908

    Article  MATH  Google Scholar 

  20. Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elast 91(1):5–148

    Article  MathSciNet  MATH  Google Scholar 

  21. Cook RD, Malkus DS, Plesha ME, Witt RJ (1974) Concepts and applications of finite element analysis, vol 4. Wiley, New York

    Google Scholar 

  22. Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  23. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104

    Article  Google Scholar 

  24. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general non-linear analysis. Eng Comput 1(1):77–88

    Article  Google Scholar 

  25. Egger A, Pillai U, Agathos K, Kakouris E, Chatzi E, Aschroft IA, Triantafyllou SP (2019) Discrete and phase field methods for linear elastic fracture mechanics: a comparative study and state-of-the-art review. Appl Sci 9(12):2436

    Article  Google Scholar 

  26. Ehlers W, Luo C (2018) A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing, part II: the crack-opening indicator. Comput Methods Appl Mech Eng 341:429–442

    Article  MathSciNet  MATH  Google Scholar 

  27. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  28. Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE (2019) A phase-field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng 348:680–711

    Article  MathSciNet  MATH  Google Scholar 

  29. Gerasimov T, De Lorenzis L (2019) On penalization in variational phase-field models of brittle fracture. Comput Methods Appl Mech Eng 354:990–1026

    Article  MathSciNet  MATH  Google Scholar 

  30. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A, containing papers of a mathematical or physical character 221:163–198

    Google Scholar 

  31. Heider Y, Markert B (2017) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38–46

    Article  Google Scholar 

  32. Hillerborg A, Modéer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  33. Ingraffea AR, Saouma V (1985) Numerical modeling of discrete crack propagation in reinforced and plain concrete. In: Sih GC, DiTommaso A (eds) Fracture mechanics of concrete: Structural application and numerical calculation. Engineering Application of Fracture Mechanics, vol 4. Springer, Dordrecht

    Google Scholar 

  34. Kakouris E, Triantafyllou S (2018) Material point method for crack propagation in anisotropic media: a phase field approach. Arch Appl Mech 88(1–2):287–316

    Article  Google Scholar 

  35. Kiendl J, Ambati M, De Lorenzis L, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394

    Article  MathSciNet  MATH  Google Scholar 

  36. Ko Y, Lee PS, Bathe KJ (2017) A new MITC4+ shell element. Comput Struct 182:404–418

    Article  Google Scholar 

  37. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77(18):3625–3634

    Article  Google Scholar 

  38. Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45):2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  39. Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  40. Moës N, Stolz C, Bernard PE, Chevaugeon N (2011) A level set based model for damage growth: the thick level set approach. Int J Numer Methods Eng 86(3):358–380

    Article  MathSciNet  MATH  Google Scholar 

  41. Moutsanidis G, Kamensky D, Chen J, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: Part II—immersed IGA–RKPM coupling for air-blast–structure interaction. J Mech Phys Solids 121:114–132

    Article  MathSciNet  Google Scholar 

  42. Pham K, Marigo JJ (2010) Approche variationnelle de l’endommagement: I. Les concepts fondamentaux. C R Méc 338(4):191–198

    Article  MATH  Google Scholar 

  43. Pham K, Ravi-Chandar K, Landis C (2017) Experimental validation of a phase-field model for fracture. Int J Fract 205(1):83–101

    Article  Google Scholar 

  44. Pillai U, Heider Y, Markert B (2018) A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Comput Mater Sci 153:36–47

    Article  Google Scholar 

  45. Reinoso J, Paggi M, Linder C (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Comput Mech 59(6):981–1001

    Article  MathSciNet  MATH  Google Scholar 

  46. Remmers J, de Borst R, Needleman A (2003) A cohesive segments method for the simulation of crack growth. Comput Mech 31(1–2):69–77

    Article  MATH  Google Scholar 

  47. Rethore J, Gravouil A, Combescure A (2004) A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing. Comput Methods Appl Mech Eng 193(42):4493–4510

    Article  MATH  Google Scholar 

  48. Rouzegar SJ, Mirzaei M (2013) Modeling dynamic fracture in Kirchhoff plates and shells using the extended finite element method. Sci Iran 20(1):120–130

    Google Scholar 

  49. Shahani A, Fasakhodi MA (2009) Finite element analysis of dynamic crack propagation using remeshing technique. Mater Des 30(4):1032–1041

    Article  Google Scholar 

  50. Sih GC, Paris P, Erdogan F (1962) Crack-tip, stress-intensity factors for plane extension and plate bending problems. J Appl Mech 29(2):306–312

    Article  Google Scholar 

  51. Soto A, González E, Maimí P, de la Escalera FM, de Aja JS, Alvarez E (2018) Low velocity impact and compression after impact simulation of thin ply laminates. Compos Part A Appl Sci Manuf 109:413–427

    Article  Google Scholar 

  52. Ulmer H, Hofacker M, Miehe C (2012) Phase field modeling of fracture in plates and shells. PAMM 12(1):171–172

    Article  Google Scholar 

  53. Wilson ZA, Landis CM (2016) Phase-field modeling of hydraulic fracture. J Mech Phys Solids 96:264–290

    Article  MathSciNet  Google Scholar 

  54. Wu JY, Nguyen VP, Nguyen CT, Sutula D, Bordas S, Sinaie S (2018) Phase field modeling of fracture. In: Advances in applied mechancis: multi-scale theory and computation, vol 52

  55. Zienkiewicz O, Taylor R, Too J (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3(2):275–290

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding received from the European Union’s Horizon 2020 research and innovation programme under the Marie Skodowska-Curie SAFE-FLY Project, Grant Agreement No. 721455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas P. Triantafyllou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Jacobian for coordinate transformation

The Jacobian \([{\mathbf {J}}]\) for coordinate transformation mapping in a Reissner–Mindlin shell element and its first column are defined as in Eqs. (61) and (62). Eq. (62) can be subsequently used to derive expressions for second and third column in a similar manner.

$$\begin{aligned}{}[\mathbf{J}] = \begin{bmatrix} x_{,\xi } &{}\quad y_{,\xi } &{}\quad z_{,\xi } \\ x_{,\eta } &{}\quad y_{,\eta } &{}\quad z_{,\eta } \\ x_{,\zeta } &{}\quad y_{,\zeta } &{}\quad z_{,\zeta } \end{bmatrix} \end{aligned}$$
(61)

where

$$\begin{aligned} \begin{bmatrix} x_{,\xi } \\ x_{,\eta } \\ x_{,\zeta } \end{bmatrix} = \begin{bmatrix} \sum N_{i,\xi } \Big (x_i+\dfrac{\zeta t_i l_{3i}}{2}\Big ) \\ \sum N_{i,\eta } \Big (x_i+\dfrac{\zeta t_i l_{3i}}{2}\Big ) \\ \sum N_i \Big (\dfrac{t_i l_{3i}}{2}\Big ) \end{bmatrix} \end{aligned}$$
(62)

where \({\mathbf {x}}=[x,y,z]\) is the position vector of any arbitrary point within the shell element, \(\{\xi , \eta , \zeta \}\) are the shell parametric coordinates, \(t_i\) is the shell thickness and \(\{l_{3i}, m_{3i}, n_{3i}\}\) are the direction cosines of normal vector \({\mathbf {V}}_{3i}\) to the shell mid-surface at any node i.

Appendix B: Coordinate-transformation matrix for rotation of strain tensors

The strains can be rotated from any one coordinate system (say \(C_1\) with normalized basis vectors \(\bar{e}\)) to another coordinate system (\(C_2\) with normalized basis vectors \({\hat{e}}\)) by via the strain-transformation matrix \({\pmb {\mathcal {T}}}_{{\varvec{\varepsilon }}}\) shown in Eq. (63).

$$\begin{aligned} {\pmb {\mathcal {T}}}_{{\varvec{\varepsilon }}}=\begin{bmatrix} {\pmb {\mathcal {T}}}_{11} &{}\quad {\pmb {\mathcal {T}}}_{12} \\ {\pmb {\mathcal {T}}}_{21} &{}\quad {\pmb {\mathcal {T}}}_{22} \end{bmatrix} \end{aligned}$$
(63)

with,

$$\begin{aligned} {\pmb {\mathcal {T}}}_{11}= & {} \begin{bmatrix} l^2_1 &{}\quad m^2_1 &{}\quad n^2_1 \\ l^2_2 &{}\quad m^2_2 &{}\quad n^2_2 \\ l^2_3 &{}\quad m^2_3 &{}\quad n^2_3 \end{bmatrix} \end{aligned}$$
(64)
$$\begin{aligned} {\pmb {\mathcal {T}}}_{12}= & {} \begin{bmatrix} l_1 m_1 &{}\quad m_1 n_1 &{}\quad n_1 l_1 \\ l_2 m_2 &{}\quad m_2 n_2 &{}\quad n_2 l_2 \\ l_3 m_3 &{}\quad m_3 n_3 &{}\quad n_3 l_3 \\ \end{bmatrix} \end{aligned}$$
(65)
$$\begin{aligned} {\pmb {\mathcal {T}}}_{21}= & {} \begin{bmatrix} 2 l_1 l_2 &{}\quad 2 m_1 m_2 &{}\quad 2 n_1 n_2 \\ 2 l_2 l_3 &{}\quad 2 m_2 m_3 &{}\quad 2 n_2 n_3 \\ 2 l_3 l_1 &{}\quad 2 m_3 m_1 &{}\quad 2 n_3 n_1 \end{bmatrix} \end{aligned}$$
(66)
$$\begin{aligned} {\pmb {\mathcal {T}}}_{22}= & {} \begin{bmatrix} l_1 m_2 + l_2 m_1 &{}\quad m_1 n_2 + m_2 n_1 &{} \quad n_1 l_2 + n_2 l_1 \\ l_2 m_3 + l_3 m_2 &{}\quad m_2 n_3 + m_3 n_2 &{}\quad n_2 l_3 + n_3 l_2 \\ l_3 m_1 + l_1 m_3 &{}\quad m_3 n_1 + m_1 n_3 &{}\quad n_3 l_1 + n_1 l_3 \end{bmatrix} \end{aligned}$$
(67)

where the terms \([l_1, m_1, n_1]\), \([l_2, m_2, n_2]\) and \([l_3, m_3, n_3]\) correspond to the direction cosines of the shell nodal-vectors \(\mathbf{V}_{1i}\), \(\mathbf{V}_{2i}\) and \(\mathbf{V}_{3i}\) respectively, defined according to Eq. (68) [11].

$$\begin{aligned} \begin{aligned} l_1&= \text{ cos }[\bar{\mathbf{e}}_{x},{\hat{\mathbf{e}}}_{x}] \, ; \, m_1 = \text{ cos }[\bar{\mathbf{e}}_{y},{\hat{\mathbf{e}}}_{x}] \, ; \, n_1 = \text{ cos }[\bar{\mathbf{e}}_{z},{\hat{\mathbf{e}}}_{x}] \\ l_2&= \text{ cos }[\bar{\mathbf{e}}_{x},{\hat{\mathbf{e}}}_{y}] \, ; \, m_2 = \text{ cos }[\bar{\mathbf{e}}_{y},{\hat{\mathbf{e}}}_{y}] \, ; \, n_2 = \text{ cos }[\bar{\mathbf{e}}_{z},{\hat{\mathbf{e}}}_{y}] \\ l_3&= \text{ cos }[\bar{\mathbf{e}}_{x},{\hat{\mathbf{e}}}_{z}] \, ; \, m_3 = \text{ cos }[\bar{\mathbf{e}}_{y},{\hat{\mathbf{e}}}_{z}] \, ; \, n_3 = \text{ cos }[\bar{\mathbf{e}}_{z},{\hat{\mathbf{e}}}_{z}] \end{aligned} \end{aligned}$$
(68)

The resulting \({\pmb {\mathcal {T}}}_{{\varvec{\varepsilon }}}\) is a \((6\times 6)\) matrix which can be multiplied to \((6\times 1)\) strain vector (expressed in Voigt notation) to transform it from coordinate system \(C_1\) to coordinate system \(C_2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, U., Triantafyllou, S.P., Ashcroft, I. et al. Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach. Comput Mech 65, 1413–1432 (2020). https://doi.org/10.1007/s00466-020-01827-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01827-z

Keywords

Navigation