Skip to main content
Log in

Effect of Ultrasonication on the Phase Composition of Hyrdoxyapatite Synthesized using a Hydrothermal Method

  • Published:
Refractories and Industrial Ceramics Aims and scope

The effect of ultrasonication time after hydrothermal synthesis of hydroxyapatite (HA) using the precursor system Ca(NO3)2–(NH4)2HPO4–NH4OH on the phase composition and degree of crystallinity was examined. HA samples were studied using x-ray diffraction and FT-IR spectroscopy. The studies showed that ultrasonication regardless of the duration had no effect on the phase composition and degree of crystallinity of the synthesized HA samples. HA phase Ca10(PO4)6(OH)2 with 0.97 degree of crystallinity was present in all studied samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. Mondal and U. Pal, “3D hydroxyapatite scaffold for bone regeneration and local drug delivery applications,” J. Drug Delivery Sci. Technol., 101131 (2019); https://doi.org/10.1016/j.jddst.2019.101131.

  2. S. J. Kalita, A. Bhardwaj, and H. A. Bhatt, “Nanocrystalline calcium phosphate ceramics in biomedical engineering,” Mater. Sci. Eng., C, 27(3), 441 – 449 (2007); https://doi.org/10.1016/j.msec.2006.05.018.

    Article  CAS  Google Scholar 

  3. S. Bose and S. Tarafder, “Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review,” Acta Biomater., 8(4), 1401 – 1421 (2012); https://doi.org/10.1016/j.actbio.2011.11.017.

    Article  CAS  Google Scholar 

  4. S. Bose, S. Dasgupta, S. Tarafder, and S. T. A. Bandyopadhyay, “Microwave-processed nanocrystalline hydroxyapatite: Simultaneous enhancement of mechanical and biological properties,” Acta Biomater., 6(9), 3782 – 3790 (2010); https://doi.org/10.1016/j.actbio.2010.03.016.

    Article  CAS  Google Scholar 

  5. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater., 9(8), 7591 – 7621 (2013); https://doi.org/10.1016/j.actbio.2013.04.012.

    Article  CAS  Google Scholar 

  6. A. Szczes, L. Holysz, and E. Chibowski, “Synthesis of hydroxyapatite for biomedical applications,” Adv. Colloid Interface Sci., 249, 321 – 330 (2017); https://doi.org/10.1016/j.cis.2017.04.007.

    Article  CAS  Google Scholar 

  7. A. Fihri, C. Len, R. S. Varma, and A. Solhy, “Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis,” Coord. Chem. Rev., 347, 48 – 76 (2017); https://doi.org/10.1016/j.ccr.2017.06.009.

    Article  CAS  Google Scholar 

  8. S. Pramanik, A. K. Agarwal, K. N. Rai, and A. Garg, “Development of high strength hydroxyapatite by solid-state-sintering process,” Ceram. Int., 33(3), 419 – 426 (2007); https://doi.org/10.1016/j.ceramint.2005.10.025.

    Article  CAS  Google Scholar 

  9. S. K. Swain and D. Sarkar, “A comparative study: Hydroxyapatite spherical nanopowders and elongated nanorods,” Ceram. Int., 37(7), 2927 – 2930 (2011); https://doi.org/10.1016/j.ceramint.2011.03.077.

    Article  CAS  Google Scholar 

  10. Y. Cai, D. Mei, T. Jiang, and J. Yao, “Synthesis of oriented hydroxyapatite crystals: Effect of reaction conditions in the presence or absence of silk sericin,” Mater. Lett., 64(24), 2676 – 2678 (2010); https://doi.org/10.1016/j.matlet.2010.08.071.

    Article  CAS  Google Scholar 

  11. J. Chen, Y. Wang, X. Chen, et al., “A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders,” Mater. Lett., 65(12), 1923 – 1926 (2011); https://doi.org/10.1016/j.matlet.2011.03.076.

    Article  CAS  Google Scholar 

  12. A. H. Rajabi-Zamani, A. Behnamghader, and A. Kazemzadeh, “Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol-gel method,” Mater. Sci. Eng., C, 28(8), 1326 – 1329 (2008); https://doi.org/10.1016/j.msec.2008.02.001.

    Article  CAS  Google Scholar 

  13. H. C. Shum, A. Bandyopadhyay, S. Bose, and D. A. Weitz, “Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite,” Chem. Mater., 21(22), 5548 – 5555 (2009); https://doi.org/10.1021/cm9028935.

    Article  CAS  Google Scholar 

  14. W. Y. Zhou, M. Wang, W. L. Cheung, B. C. Guo, and D. M. Jia, “Synthesis of carbonated hydroxyapatite nanospheres through nanoemulsion,” J. Mater. Sci.: Mater. Med., 19(1), 103 – 110 (2008); DOI: https://doi.org/10.1007/s10856-007-3156-9.

    Article  CAS  Google Scholar 

  15. J. L. Sturgeon and P. W. Brown, “Effects of carbonate on hydroxyapatite formed from CaHPO4 and Ca4(PO4)2O,” J. Mater. Sci.: Mater. Med., 20(9), 1787 – 1794 (2009); DOI: https://doi.org/10.1007/s10856-009-3752-y.

    Article  CAS  Google Scholar 

  16. H. C. Park, D. J. Baek, Y. M. Park, S. Y. Yoon, and R. Stevens, “Thermal stability of hydroxyapatite whiskers derived from the hydrolysis of _-TCP,” J. Mater. Sci., 39(7), 2531 – 2534 (2004).

    Article  CAS  Google Scholar 

  17. G. Zhang, J. Chen, S. Yang, et al., “Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method,” Mater. Lett., 65(3), 572 – 574 (2011); https://doi.org/10.1016/j.matlet.2010.10.078.

    Article  CAS  Google Scholar 

  18. D. K. Lee, J. Y. Park, M. R. Kim, and D.-J. Jang, “Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms,” CrystEngComm, 13(17), 5455 – 5459 (2011); DOI: https://doi.org/10.1039/C1CE05511A.

    Article  CAS  Google Scholar 

  19. E. A. Abdel-Aal, A. A. El-Midany, and H. El-Shall, “Mechanochemical–hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design,” Mater. Chem. Phys., 112(1), 202 – 207 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.053.

    Article  CAS  Google Scholar 

  20. Y. Sun, G. G. Dongliang, and T. Z. Wang, “Reverse microemulsion- directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions,” J. Phys. Chem. Solids., 68(3), 373 – 377 (2007); https://doi.org/10.1016/j.jpcs.2006.11.026.

    Article  CAS  Google Scholar 

  21. W. Amer, K. Abdelouahdi, H. R. Ramananarivo, et al., “Synthesis of mesoporous nanohydroxyapatite by using zwitterions surfactant,” Mater. Lett., 107, 189 – 193 (2013); https://doi.org/10.1016/j.matlet.2013.05.103.

    Article  CAS  Google Scholar 

  22. W. Amer, K. Abdelouahdi, H. R. Ramananarivo, et al., “Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates,” CrystEngComm, 16(4), 543 – 549 (2014); DOI: https://doi.org/10.1039/C3CE42150C.

    Article  CAS  Google Scholar 

  23. P. Honarmandi, P. Honarmandi, A. Shokuhfar, B. Nasiri-Tabrizi, and R. Ebrahimi-Kahrizsangi, “Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles,” Adv. App. Ceram., 109(2), 117 – 122 (2010); https://doi.org/10.1179/174367509X12447975734230.

    Article  CAS  Google Scholar 

  24. M. H. Fathi and E. M. Zahrani, “Mechanical alloying synthesis and bioactivity evaluation of nanocrystalline fluoridated hydroxyapatite,” J. Cryst. Growth., 311(5), 1392 – 1403 (2009); https://doi.org/10.1016/j.jcrysgro.2008.11.100.

    Article  CAS  Google Scholar 

  25. M. A. Giardina and M. A. Fanovich, “Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation,” Ceram. Int., 36(6), 1961 – 1969 (2010); https://doi.org/10.1016/j.ceramint.2010.05.008.

    Article  CAS  Google Scholar 

  26. P. Rouhani, N. Taghavinia, and S. Rouhani, “Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation,” Ultrason. Sonochem., 17(5), 853 – 856 (2010); https://doi.org/10.1016/j.ultsonch.2010.01.010.

    Article  CAS  Google Scholar 

  27. A. Marten, P. Fratzl, O. Paris, and P. Zaslansky, “On the mineral in collagen of human crown dentine,” Biomaterials, 31(20), 5479 – 5490 (2010); https://doi.org/10.1016/j.biomaterials.2010.03.030.

    Article  CAS  Google Scholar 

  28. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater., 9(8), 7591 – 7621 (2013); https://doi.org/10.1016/j.actbio.2013.04.012.

    Article  CAS  Google Scholar 

  29. M. Vallet-Regi and J.M Gonzalez-Calbet, “Calcium phosphates as substitution of bone tissues,” Prog. Solid State Chem., 32(1 – 2), 1 – 31 (2004); https://doi.org/10.1016/j.progsolidstchem.2004.07.001.

    Article  CAS  Google Scholar 

  30. A. Rabiei, T. Blalock, B. Thomas, et al., “Microstructure, mechanical properties, and biological response to functionally graded HA coatings,” Mater. Sci. Eng., C, 27(3), 529 – 533 (2007); https://doi.org/10.1016/j.msec.2006.05.036.

    Article  CAS  Google Scholar 

  31. L. Chen, J. M. Mccrate, J. C.-M. Lee, and H. Li, “The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells,” Nanotechnology, 22(10), 105708 (2011); doi:https://doi.org/10.1088/0957-4484/22/10/105708.

    Article  CAS  Google Scholar 

  32. A. Yudin, I. Ilinykh, K. Chuprunov, et al., “Microwave treatment and pH influence on hydroxyapatite morphology and structure,” J. Phys.: Conf. Ser., 1145(1), 012003 (2019); doi:https://doi.org/10.1088/1742-6596/1145/1/012003.

    Article  CAS  Google Scholar 

  33. K. Chuprunov, E. Kolesnikov, I. Ilinykh, et al., “The ultrasound effect on the morphological properties of hydroxyapatite,” MATEC Web Conf., 243, 00012 (2018); https://doi.org/10.1051/matecconf/201824300012.

    Article  CAS  Google Scholar 

  34. L. Berzina-Cimdina and N. Borodajenko, in: Infrared Spectroscopy — Materials Science, Engineering and Technology, IntechOpen, 2012; DOI: https://doi.org/10.5772/2055.

Download references

Acknowledgement

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. RFMEFI57517X0168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Yudin.

Additional information

Translated from Novye Ogneupory, No. 10, pp. 48 – 53, September, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, A.G., Lysov, D.V., Chuprunov, K.O. et al. Effect of Ultrasonication on the Phase Composition of Hyrdoxyapatite Synthesized using a Hydrothermal Method. Refract Ind Ceram 60, 516–520 (2020). https://doi.org/10.1007/s11148-020-00396-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00396-1

Keywords

Navigation