Skip to main content
Log in

Dynamic stochastic approximation for multi-stage stochastic optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, we consider multi-stage stochastic optimization problems with convex objectives and conic constraints at each stage. We present a new stochastic first-order method, namely the dynamic stochastic approximation (DSA) algorithm, for solving these types of stochastic optimization problems. We show that DSA can achieve an optimal \({{\mathcal {O}}}(1/\epsilon ^4)\) rate of convergence in terms of the total number of required scenarios when applied to a three-stage stochastic optimization problem. We further show that this rate of convergence can be improved to \({{\mathcal {O}}}(1/\epsilon ^2)\) when the objective function is strongly convex. We also discuss variants of DSA for solving more general multi-stage stochastic optimization problems with the number of stages \(T > 3\). The developed DSA algorithms only need to go through the scenario tree once in order to compute an \(\epsilon \)-solution of the multi-stage stochastic optimization problem. As a result, the memory required by DSA only grows linearly with respect to the number of stages. To the best of our knowledge, this is the first time that stochastic approximation type methods are generalized for multi-stage stochastic optimization with \(T \ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Linear and Non-linear Programming. Stanford Mathematical Studies in the Social Sciences. Stanford University Press, Palo Alto (1958)

    MATH  Google Scholar 

  2. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  3. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems. SIAM J. Optim. 24(4), 1779–1814 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Dai, B., He, N., Pan, Y., Boots, B., Song, L.: Learning from conditional distributions via dual embeddings. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 1458–1467. (2017)

  6. Dantzig, George B., Infanger, Gerd: Multi-stage stochastic linear programs for portfolio optimization. Ann. Oper. Res. 45(1), 59–76 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Donohue, Christopher J., Birge, John R.: The abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourse. Algorithm. Oper. Res. 1(1), 20–30 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, I: a generic algorithmic framework. SIAM J. Optim. 22, 1469–1492 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Ghadimi, S., Lan, G.: Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, II: shrinking procedures and optimal algorithms. SIAM J. Optim. 23, 2061–2089 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Ghadimi, S., Lan, G.: Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM J. Optim. 23(4), 2341–2368 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Math. Program. 156, 59–99 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Ghadimi, S., Lan, G., Zhang, H.: Mini-batch stochastic approximation methods for constrained nonconvex stochastic programming. Math. Program. 155, 267–305 (2014)

    MATH  Google Scholar 

  13. He, Bingsheng, Yuan, Xiaoming: On the o(1/n) convergence rate of the douglas-rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math. Oper. Res. 16, 650–669 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Hindsberger, Magnus, Philpott, A.B.: Resa: a method for solving multistage stochastic linear programs. J. Appl. Oper. Res. 6(1), 2–15 (2014)

    Google Scholar 

  16. Kozmík, Václav, Morton, David P.: Evaluating policies in risk-averse multi-stage stochastic programming. Math. Program. 152(1–2), 275–300 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Lan, G.: An optimal method for stochastic composite optimization. Math. Program. 133(1), 365–397 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Lan, G.: Bundle-level type methods uniformly optimal for smooth and non-smooth convex optimization. Math. Program. 149(1), 1–45 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with \({\cal{O}}(1/\epsilon )\) iteration-complexity for cone programming. Math. Program. 126, 1–29 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Lan, G., Nemirovski, A.S., Shapiro, A.: Validation analysis of mirror descent stochastic approximation method. Math. Program. 134, 425–458 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Lan, Guanghui, Yi, Zhou: An optimal randomized incremental gradient method. Math. Program. 171, 161–215 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal projection method for the iterates and the ergodic mean. SIAM J. Optim. 20, 2755–2787 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Nedić, A.: On stochastic subgradient mirror-descent algorithm with weighted averaging. Optim. Lett. 12, 1179–1197 (2012)

    Google Scholar 

  24. Nemirovski, A.S.: Prox-method with rate of convergence \(o(1/t)\) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Nemirovski, A.S., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Nemirovski, A.S., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience Series in Discrete Mathematics. Wiley, Hoboken (1993)

    Google Scholar 

  27. Nesterov, Y.E.: A method for unconstrained convex minimization problem with the rate of convergence \(O(1/k^2)\). Doklady AN SSSR 269, 543–547 (1983)

    Google Scholar 

  28. Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Massachusetts (2004)

    MATH  Google Scholar 

  29. Nesterov, Y.E.: Smooth minimization of nonsmooth functions. Math. Program. 103, 127–152 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Pedersen, Christian S., Satchell, Stephen E.: Utility functions whose parameters depend on initial wealth. Bull. Econ. Res. 55(4), 357–371 (2003)

    MathSciNet  Google Scholar 

  32. Pereira, Mario V.F., Pinto, Leontina M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3), 359–375 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Philpott, A., Matos, Vd, Finardi, E.: On solving multistage stochastic programs with coherent risk measures. Oper. Res. 61, 957–970 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Polyak, B.T.: New stochastic approximation type procedures. Automat. i Telemekh. 7, 98–107 (1990)

    Google Scholar 

  35. Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30, 838–855 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    MathSciNet  MATH  Google Scholar 

  37. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  38. Tyrrell Rockafellar, R., Wets, Roger J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991)

    MathSciNet  MATH  Google Scholar 

  39. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009)

    MATH  Google Scholar 

  40. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems. http://www.optimization-online.org, (2004). Accessed Oct 2004

  41. Shaprio, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34, 1–8 (2006)

    MathSciNet  Google Scholar 

  42. Shaprio, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209, 63–72 (2011)

    MathSciNet  Google Scholar 

  43. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y., Kutyniok, G. (eds.) Compressed Sensing: Theory and Applications, pp. 210–268. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511794308.00

    Chapter  Google Scholar 

  44. Wang, M., Fang, E.X., Liu, H.: Stochastic compositional gradient descent: algorithms for minimizing compositions of expected-value functions. Math. Program. 161(1–2), 419–449 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Wang, Xiao, Ma, S., GOLDFARB, D., Liu, W.: Stochastic quasi-newton methods for nonconvex stochastic optimization. SIAM J. Optim. 27, 235–247 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Lan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by National Science Foundation (CMMI-1637473,1637474) and Army Research Office (W911NF-18-1-0223) and Office of Naval Research (N00014-16-1-2802).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, G., Zhou, Z. Dynamic stochastic approximation for multi-stage stochastic optimization. Math. Program. 187, 487–532 (2021). https://doi.org/10.1007/s10107-020-01489-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01489-y

Mathematics Subject Classification

Navigation