Skip to main content
Log in

Review on image-stitching techniques

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Image stitching, or known as image mosaic, is the process that combines images with overlapped areas to form an image with wide view and high resolution. Image stitching technique has been quickly developed these years. It has become an important branch in digital image processing and has wide applications. Many image stitching methods have been proposed. This article takes investigation on some image stitching techniques, including image registration, seam removal and quality assessment. Most existing related methods are introduced. Experiments are done to show the result of some main methods. At last, the advantages and disadvantages of some existing methods are discussed and some future potential work are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bhosle, U., Chaudhuri, S., Roy, S.D.: A fast method for image mosaicing using geometric hashing. Iete J. Res. 48(3–4), 317–324 (2002)

    Google Scholar 

  2. Laraqui, A., et al.: Image mosaicing using voronoi diagram. Multimed. Tools Appl. 76(6), 8803–8829 (2017)

    Google Scholar 

  3. Kekec, T., Yildirim, A., Unel, M.: A new approach to real-time mosaicing of aerial images. Robot. Autonom. Syst. 62(12), 1755–1767 (2014)

    Google Scholar 

  4. Xie, X., et al.: A study on fast SIFT image mosaic algorithm based on compressed sensing and wavelet transform. J. Ambient Intell. Human. Comput. 6(6), 835–843 (2015)

    Google Scholar 

  5. Ye, M.J., et al.: Automatic seamless stitching method for CCD images of Chang’E-1 lunar mission. J. Earth Sci. 22(5), 610–618 (2011)

    Google Scholar 

  6. Hui, F.M., et al.: An improved landsat image mosaic of Antarctica. Sci China-Earth Sci 56(1), 1–12 (2013)

    MathSciNet  Google Scholar 

  7. Bhat, A.S., et al.: Template matching technique for panoramic image stitching. In: Modelling symposium (AMS), 7th Asia. IEEE (2013)

  8. Dekel, T., et al.: Best-buddies similarity for robust template matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2015)

  9. Pilchak, A.L., et al.: Using cross-correlation for automated stitching of two-dimensional multi-tile electron backscatter diffraction data. J. Microsc. 248(2), 172–186 (2012)

    Google Scholar 

  10. Adwan, S., Alsaleh, I., Majed, R.: A new approach for image stitching technique using dynamic time warping (DTW) algorithm towards scoliosis X-ray diagnosis. Measurement 84, 32–46 (2016)

    Google Scholar 

  11. Liu, Y.-Y., et al.: A study of image stitching algorithm based on ratio matching. Electro-Opt. Technol. Appl. 6, 17 (2007)

    Google Scholar 

  12. Legesse, F.B., et al.: Seamless stitching of tile scan microscope images. J. Microsc. 258(3), 223–232 (2015)

    Google Scholar 

  13. Nasibov, A., H. Nasibov, Hacizade, F.: Seamless image stitching algorithm using radiometric lens calibration for high resolution optical microscopy. In: Soft computing, computing with words and perceptions in system analysis, decision and control, 2009. ICSCCW 2009. Fifth international conference on. IEEE (2009)

  14. Li, W.T.: Mutual information functions versus correlation-functions. J. Stat. Phys. 60(5–6), 823–837 (1990)

    MathSciNet  MATH  Google Scholar 

  15. Dame, A., Marchand, E.: Second-order optimization of mutual information for real-time image registration. IEEE Trans. Image Process. 21(9), 4190–4203 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Rivaz, H., Karimaghaloo, Z., Collins, D.L.: Self-similarity weighted mutual information: a new nonrigid image registration metric. Med. Image Anal. 18(2), 343–358 (2014)

    Google Scholar 

  17. Gong, M.G., et al.: A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information. IEEE Trans. Geosci. Remote Sens. 52(7), 4328–4338 (2014)

    Google Scholar 

  18. Gupta, N., et al.: Extracting information from a query image, for content based image retrieval. In: 2015 eighth international conference on advances in pattern recognition, New York, IEEE, p. 225 (2015)

  19. Liu, H., et al.: Feature selection with dynamic mutual information. Pattern Recogn. 42(7), 1330–1339 (2009)

    MATH  Google Scholar 

  20. Soleimani, S., et al.: Online wear detection using high-speed imaging. Microsc. Microanal. 22(4), 820–840 (2016)

    Google Scholar 

  21. Lin, Y., Yu, Q., Medioni, G.: Efficient detection and tracking of moving objects in geo-coordinates. Mach. Vis. Appl. 22(3), 505–520 (2011)

    Google Scholar 

  22. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 32(1), 71–86 (1999)

    Google Scholar 

  23. Klein, S., et al.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407–1417 (2008)

    Google Scholar 

  24. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. (TOG) 2(4), 217–236 (1983)

    Google Scholar 

  25. Wang, C.-Y., Zhou, M.-Q.: A localized pyramid decomposition approach for image mosaic. J. Northw. Univ. (Nat. Sci. Edn.) 3, 12 (2006)

    Google Scholar 

  26. Anuta, P.E.: Spatial registration of multispectral and multitemporal digital imagery using fast Fourier transform techniques. IEEE Trans. Geosci. Electron. 8(4), 353–368 (1970)

    Google Scholar 

  27. Hurtós, N., Petillot, Y., Salvi, J.: Fourier-based registrations for two-dimensional forward-looking sonar image mosaicing. In: Intelligent robots and systems (IROS), 2012 IEEE/RSJ international conference on. IEEE (2012)

  28. Vescovi, R.F.C., Cardoso, M.B., Miqueles, E.X.: Radiography registration for mosaic tomography. J. Synch. Radiat. 24, 686–694 (2017)

    Google Scholar 

  29. Ghantous, M., Ghosh, S., Bayoumi, M.: A multi-modal automatic image registration technique based on complex wavelets. In: Image processing (ICIP), 2009 16th IEEE international conference on. IEEE (2009)

  30. Xing, Y.X., et al.: Robust fast corner detector based on filled circle and outer ring mask. IET Image Proc. 10(4), 314–324 (2016)

    Google Scholar 

  31. Trajkovic, M., Hedley, M.: Fast corner detection. Image Vis. Comput. 16(2), 75–87 (1998)

    Google Scholar 

  32. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS intercommission conference on fast processing of photogrammetric data (1987)

  33. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. DTIC Document (1980)

  34. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference. Citeseer (1988)

  35. Harris, C.G., Pike, J.: 3D positional integration from image sequences. Image Vis. Comput. 6(2), 87–90 (1988)

    Google Scholar 

  36. Zhu, M.C., et al.: Efficient video panoramic image stitching based on an improved selection of Harris corners and a multiple-constraint corner matching. Plos One 8(12), e81182 (2013)

    Google Scholar 

  37. Zhu, M.C., et al.: A fast image stitching algorithm via multiple-constraint corner matching. Math. Prob. Eng. 2013, 157847 (2013)

    Google Scholar 

  38. Fu, Z.X., Wang, L.M.: Optimized design of automatic image mosaic. Multimed. Tools Appl. 72(1), 503–514 (2014)

    Google Scholar 

  39. Pan, H., et al.: An adaptive Harris corner detection algorithm for image mosaic. In: Chinese Conference on Pattern Recognition. Springer (2014)

  40. Zhou, Z. et al.: Fast image mosaic algorithm based on the improved Harris-SIFT algorithm, In: International Symposium on Photonics and Optoelectronics. SPIE (2015)

  41. Jiang, Z., Liu, M.: Fast image mosaic algorithm based on the improved Harris-SIFT algorithm. In: Zhou, Z. (Ed.) International Symposium on Photonics and Optoelectronics (2015)

  42. Li, B.P., Guo, C.X., Inc, D.E.P.: Application of image stitching in the scene investigation of traffic accident. In: 2016 international conference on information engineering and communications technology, pp. 127–131 (2016)

  43. Lowe, D.G.: Object recognition from local scale-invariant features. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on. IEEE (1999)

  44. Brown, M., Lowe, D.G.: Invariant features from interest point groups. In BMVC (2002)

  45. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Google Scholar 

  46. Ni, X.L., et al.: A fully automatic registration approach based on contour and SIFT for HJ-1 images. Sci. China-Earth Sci. 55(10), 1679–1687 (2012)

    Google Scholar 

  47. Guo, F., et al.: Automatic retinal image registration using blood vessel segmentation and SIFT feature. Int. J. Pattern Recognit. Artif. Intell. 31(11), 1757006 (2017)

    Google Scholar 

  48. Goncalves, H., Corte-Real, L., Goncalves, J.A.: Automatic image registration through image segmentation and SIFT. IEEE Trans. Geosci. Remote Sens. 49(7), 2589–2600 (2011)

    MATH  Google Scholar 

  49. Wang, V.T., Hayes, M.P.: Synthetic aperture sonar track registration using SIFT image correspondences. IEEE J. Ocean. Eng. 42(4), 901–913 (2017)

    Google Scholar 

  50. Min, Z., Jiguo, Z., Xusheng, X.: Panorama stitching based on sift algorithm and Levenberg–Marquardt optimization. Phys. Procedia 33, 811–818 (2012)

    Google Scholar 

  51. Zhang, Y.H., Jin, X., Wang, Z.J.: A new modified panoramic UAV image stitching model based on the GA-SIFT and adaptive threshold method. Memetic Comput. 9(3), 231–244 (2017)

    Google Scholar 

  52. Qu, Z., et al.: The improved algorithm of fast panorama stitching for image sequence and reducing the distortion errors. Math. Probl. Eng. 2015, 428076 (2015)

    Google Scholar 

  53. Zhu, J., Ren, M.W.: Image mosaic method based on SIFT features of line segment. Comput. Math. Methods Med. 2014, 926312 (2014)

    MATH  Google Scholar 

  54. Wang, F.-B., et al.: Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser. Opt. Lasers Eng. 100, 124–130 (2018)

    Google Scholar 

  55. Mills, A., Dudek, G.: Image stitching with dynamic elements. Image Vis. Comput. 27(10), 1593–1602 (2009)

    Google Scholar 

  56. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Computer vision and pattern recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE (2004)

  57. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, New York (2002)

    MATH  Google Scholar 

  58. Kshirsagar, V., Baviskar, M., Gaikwad, M.: Face recognition using Eigenfaces. In: Computer research and development (ICCRD), 2011 3rd international conference on. IEEE (2011)

  59. Li, B.L., Thomas, G., Williams, D.: Detection of ice on power cables based on image texture features. IEEE Trans. Instrum. Meas. 67(3), 497–504 (2018)

    Google Scholar 

  60. Wang, Q.Q., et al.: l(2, p)-norm based PCA for image recognition. IEEE Trans. Image Process. 27(3), 1336–1346 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. Comp. Vis. ECCV 2006 Pt 1 Proc. 3951, 404–417 (2006)

    Google Scholar 

  62. Juan, L., Gwun, O.: A comparison of sift, PCA-sift and surf. Int. J. Image Process. (IJIP) 3(4), 143–152 (2009)

    Google Scholar 

  63. Lukashevich, P., Zalesky, B., Ablameyko, S.: Medical image registration based on surf detector. Pattern Recognit. Image Anal. 21(3), 519 (2011)

    Google Scholar 

  64. Wang, G., et al.: Robust point matching method for multimodal retinal image registration. Biomed. Signal Process. Control 19, 68–76 (2015)

    Google Scholar 

  65. Yang, F., Deng, Z.S., Fan, Q.H.: A method for fast automated microscope image stitching. Micron 48, 17–25 (2013)

    Google Scholar 

  66. Yang, Z.L., Shen, D.G., Yap, P.T.: Image mosaicking using SURF features of line segments. Plos One 12(3), e0173627 (2017)

    Google Scholar 

  67. Tsai, C.M., Shih, F.Y.: An efficient image stitching method for heterogeneous car videos based on bounding boxes of features. Int. J. Pattern Recognit. Artif. Intell. 31(5), 1755008 (2017)

    Google Scholar 

  68. Wang, J., et al.: A fast mosaic method for airborne images: the new template-convolution speed-up robust features (TSURF) algorithm. Int. J. Remote Sens. 35(16), 5959–5970 (2014)

    Google Scholar 

  69. Alcantarilla, P.F., Bartoli, A., Davison, A.J.: KAZE Features. Springer, Berlin (2012)

    Google Scholar 

  70. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell. 34, 1281–1298 (2013)

    Google Scholar 

  71. Yang, X., Cheng, K.-T.: Local difference binary for ultrafast and distinctive feature description. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 188–194 (2014)

    Google Scholar 

  72. Thanh, T.M., et al.: Robust semi-blind video watermarking based on frame-patch matching. AEU-Int. J. Electron. Commun. 68(10), 1007–1015 (2014)

    Google Scholar 

  73. Liu, Y., et al.: S-AKAZE: An effective point-based method for image matching. Optik-Int. J. Light Electron Opt. 127(14), 5670–5681 (2016)

    Google Scholar 

  74. Flores-Rodrıguez, K.L., Trujillo-Romero, F.: Free form object recognition module using A-KAZE and GCS. Res. Comput. Sci 118, 19–29 (2016)

    Google Scholar 

  75. Mukherjee, P., Lall, B.: Saliency and KAZE features assisted object segmentation. Image Vis. Comput. 61, 82–97 (2017)

    Google Scholar 

  76. Qu, Z., Bu, W., Liu, L.: The algorithm of seamless image mosaic based on A-KAZE features extraction and reducing the inclination of image. IEEJ Trans. Electr. Electron. Eng. 13(1), 134–146 (2018)

    Google Scholar 

  77. Pohl, C., Van Genderen, J.L.: Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(5), 823–854 (1998)

    Google Scholar 

  78. Li, H.Y., et al.: An adaptive image-stitching algorithm for an underwater monitoring system. Int. J. Adv. Robot. Syst. 11, 166 (2014)

    Google Scholar 

  79. Li, Z.Y., et al.: A novel image mosaicking algorithm for wireless multimedia sensor networks. Int. J. Distrib. Sensor Netw. 9, 719640 (2013)

    Google Scholar 

  80. Zhu, L., et al.: Review on image fusion research. Transduces Microsyst. Technol. 33(2), 14–18 (2014)

    Google Scholar 

  81. Zhou, D.-F., He, M.-Y., Yang, Q.: A robust seamless image stitching algorithm based on feature points. Meas. Control Technol. 6, 10 (2009)

    Google Scholar 

  82. Zhao, G., Lin, L., Tang, Y.D.: A new optimal seam finding method based on tensor analysis for automatic panorama construction. Pattern Recogn. Lett. 34(3), 308–314 (2013)

    Google Scholar 

  83. Abdukholikov, M., Whangbo, T.: Fast image stitching method for handling dynamic object problems in Panoramic Images. Ksii Trans. Internet Inf. Syst. 11(11), 5419–5435 (2017)

    Google Scholar 

  84. Jeong, J., Jun, K.: A novel seam finding method using downscaling and cost for image stitching. J. Sens. 2016, 5258473 (2016)

    Google Scholar 

  85. Li, M., et al.: A stereo dual-channel dynamic programming algorithm for UAV image stitching. Sensors 17(9), 2060 (2017)

    Google Scholar 

  86. Li, L., et al.: A unified framework for street-view panorama stitching. Sensors 17(1), 1 (2017)

    Google Scholar 

  87. Li, L., et al.: Optimal seamline detection for multiple image mosaicking via graph cuts. ISPRS J. Photogram. Remote Sens. 113, 1–16 (2016)

    Google Scholar 

  88. Lee, D., Lee, S.: Seamless image stitching by homography refinement and structure deformation using optimal seam pair detection. J. Electron. Imaging 26(6), 063016 (2017)

    Google Scholar 

  89. Wang, Y., et al.: Microscopic image enhancement based on Fourier ptychography technique. SPIE Defense + Commercial Sensing, vol 10990. SPIE (2019)

  90. Chen, M., et al.: Underwater image stitching based on SIFT and wavelet fusion. Oceans—Genova (2015)

  91. Popovic, V., Leblebici, Y.: FIR filters for hardware-based real-time multi-band image blending. In: Kehtarnavaz, N., Carlsohn, M.F. (Eds) Real-Time Image and Video Processing (2015)

  92. Candes, E.J., Guo, F.: New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction. Signal Process. 82(11), 1519–1543 (2002)

    MATH  Google Scholar 

  93. Srivastava, R., Prakash, O., Khare, A.: Local energy-based multimodal medical image fusion in curvelet domain. IET Comput. Vis. 10(6), 513–527 (2016)

    Google Scholar 

  94. Yang, H., et al.: A seismic interpolation and denoising method with curvelet transform matching filter. Acta Geophys. 65(5), 1029–1042 (2017)

    Google Scholar 

  95. Gai, S.: Multichannel image denoising using color monogenic curvelet transform. Soft. Comput. 22(2), 635–644 (2018)

    MATH  Google Scholar 

  96. Math, S.S.P., Kaliyaperumal, V.: Enhancement of SAR images using fuzzy shrinkage technique in curvelet domain. Sadhana-Acad. Proc. Eng. Sci. 42(9), 1505–1512 (2017)

    MATH  Google Scholar 

  97. Ali, F.E., et al.: A curvelet transform approach for the fusion of MR and CT images. J. Mod. Opt. 57(4), 273–286 (2010)

    MATH  Google Scholar 

  98. Gattim, N.K., et al.: multimodal image fusion using curvelet and genetic algorithm. J. Sci. Ind. Res. 76(11), 694–696 (2017)

    Google Scholar 

  99. Candes, E., Demanet, L.: Curvelets and fourier integral operators. Comptes Rendus Math. 336(5), 395–398 (2003)

    MathSciNet  MATH  Google Scholar 

  100. Wu, Q., et al.: A perceptually weighted rank correlation indicator for objective image quality assessment. IEEE Trans. Image Process. 27(5), 2499–2513 (2018)

    MathSciNet  MATH  Google Scholar 

  101. Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–U35 (2008)

    Google Scholar 

  102. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Google Scholar 

  103. Wang, Z., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Google Scholar 

  104. Thomos, N., Boulgouris, N.V., Strintzis, M.G.: Optimized transmission of JPEG2000 streams over wireless channels. IEEE Trans. Image Process. 15(1), 54–67 (2006)

    Google Scholar 

  105. Hou, W.L., et al.: Blind image quality assessment via deep learning. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1275–1286 (2015)

    MathSciNet  Google Scholar 

  106. Guo-ting, W., et al.: Method for quality assessment of image mosaic. J. Commun. 8, 011 (2013)

    Google Scholar 

  107. Qureshi, H.S., et al.: Quantitative quality assessment of stitched panoramic images. IET Image Proc. 6(9), 1348–1358 (2012)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by National Natural Science Foundation of China (Grant no. 61201421), China Postdoctoral Science Foundation (Grant no. 2013M532097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Wang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yang, Z. Review on image-stitching techniques. Multimedia Systems 26, 413–430 (2020). https://doi.org/10.1007/s00530-020-00651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00651-y

Keywords

Navigation