Skip to main content
Log in

Numerical and Experimental Investigation on Power Input during Linear Friction Welding Between TC11 and TC17 Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Effects of processing parameters on the temperature field and axial shortening of linear-friction-welded joint of TC11 and TC17 titanium alloys are investigated by numerical simulation and experimental methods. The 2D model, which is simplified as a rigid body and a deformable body, is built on the basis of the LFW principle by ABAQUS/explicit software. LFW experiments are developed to verify the rationality of the model by measuring the temperature field and axial shortening. The results show that, during the friction phase, the temperature rises linearly with increasing friction time and decreasing axial shortening, heating rates slightly increase with increasing friction pressures and decrease with increasing amplitudes, and cooling rates increase with increasing friction pressures and amplitudes in the forging phase. The unilateral axial shortenings of TC11 and TC17 increase nearly linearly with increasing power input. The appropriate power input for the welded joint is measured to be in the range of 2.4 × 107 to 3.36 × 107 W/m2 based on the tensile properties and fracture morphologies. The corresponding microstructure of the welded zone (WZ) consists of a large number of fine lath martensites α′ on the TC11 side and coarsened β phases with a small amount of precipitations on the TC17 side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.J. Liu and L. Zhou, Microstructural Zones and Tensile Characteristics of Friction Stir Welded Joint of TC4 Titanium Alloy, Trans. Nonferrous Met. Soc., 2010, 20, p 1873–1878

    Article  CAS  Google Scholar 

  2. I. Bantounas, D. Dye, and T.C. Lindley, The Effect of Grain Orientation on Fracture Morphology During High-Cycle Fatigue of Ti-6Al-4V, Acta Mater., 2009, 57, p 3584–3595

    Article  CAS  Google Scholar 

  3. N. Saresh, M.G. Pillai, and J. Mathew, Investigations into the Effects of Electron Beam Welding on Thick Ti-6Al-4V Titanium Alloy, J. Mater. Process. Technol., 2007, 192-193, p 83–88

    Article  CAS  Google Scholar 

  4. A.R. Mcandrew, P.A. Colegrove, C. Buhr, B.C.D. Flipo, and A. Vairis, A Literature Review of Ti-6Al-4V Linear Friction Welding, Prog. Mater. Sci., 2018, 92, p 225–257

    Article  CAS  Google Scholar 

  5. Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39A, p 642–658

    Article  CAS  Google Scholar 

  6. W.Y. Li, A. Vairis, M. Preuss, and T.J. Ma, Linear and Rotary Friction Welding Review, Int. Mater. Rev., 2016, 61, p 71–100

    Article  CAS  Google Scholar 

  7. T.J. Ma, L.F. Tang, W.Y. Li, Y. Zhang, Y. Xiao, and A. Vairis, Linear Friction Welding of a Solid-Solution Strengthened Ni-Based Superalloy: Microstructure Evolution and Mechanical Properties Studies, J. Manuf. Process., 2018, 34, p 442–450

    Article  Google Scholar 

  8. P. Zhao and L. Fu, Strain Hardening Behavior of Linear Friction Welded Joints Between TC11 and TC17 Dissimilar Titanium Alloys, Mater. Sci. Eng. A Struct., 2015, 621, p 149–156

    Article  CAS  Google Scholar 

  9. P. Zhao, L. Fu, and H. Chen, Low Cycle Fatigue Properties of Linear Friction Welded Joint of TC11 and TC17 Titanium Alloys, J. Alloys Compd., 2016, 675, p 248–256

    Article  CAS  Google Scholar 

  10. R. Turner, J.C. Gebelin, R.M. Ward, and R.C. Reed, Linear Friction Welding of Ti-6Al-4V: Modelling and Validation, Acta Mater., 2011, 59, p 3792–3803

    Article  CAS  Google Scholar 

  11. E.A. Starke Jr., and J.C. Williams, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799

    Article  Google Scholar 

  12. J. Tao, T.C. Zhang, P.T. Liu, J. Li, and Y. Mang, Numerical Computation of a Linear Friction Welding Process, Mater. Sci. Forum, 2008, 575-578, p 811–815

    Article  Google Scholar 

  13. A. Vairis and M. Frost, Modelling the Linear Friction Welding of Titanium Blocks, Mater. Sci. Eng. A Struct., 2000, 292, p 8–17

    Article  Google Scholar 

  14. A.R. Mcandrew, P.A. Colegrove, A.C. Addison, B.C.D. Flipo, and M.J. Russell, Modelling the Influence of the Process Inputs on the Removal of Surface Contaminants from Ti-6Al-4V Linear Friction Welds, Mater. Des., 2015, 66, p 183–195

    Article  CAS  Google Scholar 

  15. E. Ceretti, L. Fratini, C. Giardini, and S.D. La, Numerical Modelling of the Linear Friction Welding Process, Int. J. Mater. Form., 2010, 3, p 1015–1018

    Article  Google Scholar 

  16. W.Y. Li, S.X. Shi, F.F. Wang, T.J. Ma, and A. Vairis, Heat Reflux in Flash and Its Effect on Joint Temperature History During Linear Friction Welding of Steel, Int. J. Therm. Sci., 2013, 67, p 192–199

    Article  Google Scholar 

  17. J. Sorina-muller, M. Rettenmayr, D. Schneefeld, O. Roder, and W. Fried, FEM Simulation of the Linear Friction Welding of Titanium Alloys, Comput. Mater. Sci., 2010, 48, p 749–758

    Article  Google Scholar 

  18. P. Wanjara and M. Jahazi, Linear Friction Welding of Ti-6Al-4V: Processing, Microstructure, and Mechanical-Property Inter-relationships, Metall. Mater. Trans. A, 2005, 36, p 2149–2164

    Article  Google Scholar 

  19. A. Vairis and M. Frost, High Frequency Linear Friction Welding of a Titanium Alloy, Wear, 1998, 217, p 117–131

    Article  CAS  Google Scholar 

  20. P.K. Zhao, L. Fu, and D.C. Zhong, Numerical Simulation of Transient Temperature and Axial Deformation During Linear Friction Welding Between TC11 and TC17 Titanium Alloys, Comput. Mater. Sci., 2014, 92, p 325–333

    Article  CAS  Google Scholar 

  21. A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, and X.P. Cui, Hot working of Ti-6Al-3Mo-2Zr-0.3Si alloy with lamellar alpha plus beta starting structure using processing map, Mater. Des., 2009, 30, p 1625–1631

    Article  CAS  Google Scholar 

  22. B. Lang, T.C. Zhang, X.H. Li, and D.L. Guo, Microstructural Evolution of a TC11 Titanium Alloy During Linear Friction Welding, J. Mater. Sci., 2010, 45, p 6218–6224

    Article  CAS  Google Scholar 

  23. S.Q. Wang, J.H. Liu, and D.L. Chen, Effect of Strain Rate and Temperature on Strain Hardening Behavior of a Dissimilar Joint Between Ti-6Al-4V and Ti17 Alloys, Mater. Des., 2014, 56, p 174–184

    Article  CAS  Google Scholar 

  24. E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25, p 5705–5713

    Article  CAS  Google Scholar 

  25. Y.X. Tong, B. Guo, Y.F. Zheng, C.Y. Chung, and L.W. Ma, Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys, J. Mater. Eng. Perform., 2011, 20, p 762–766

    Article  CAS  Google Scholar 

  26. S.Q. Wang, J.H. Liu, Z.X. Lu, and D.L. Chen, Cyclic Deformation of Dissimilar Welded Joints Between Ti-6Al-4V and Ti17 Alloys: Effect of Strain Ratio, Mater. Sci. Eng. A Struct., 2014, 598, p 122–134

    Article  CAS  Google Scholar 

  27. W.Y. Li, T.J. Ma, and J.L. Li, Numerical Simulation of Linear Friction Welding of Titanium Alloy: Effects of Processing Parameters, Mater. Des., 2010, 31, p 1497–1507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by China Postdoctoral Science Foundation (No. 2017M613172), Natural Science Foundation of Shaanxi Provincial Department of Education (No. 17JK0562), and Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016JM5074). The computations are supported by Central for High Performance Computing of Northwestern Polytechnical University, China. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengkang Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Fu, L. Numerical and Experimental Investigation on Power Input during Linear Friction Welding Between TC11 and TC17 Alloys. J. of Materi Eng and Perform 29, 2061–2072 (2020). https://doi.org/10.1007/s11665-020-04745-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04745-6

Keywords

Navigation