Skip to main content
Log in

Morphology, abrasion and corrosion resistance study of the plasma electrolytic oxidation films formed on pure titanium by adding silane in the electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface modification of pure Ti is performed with the addition of aminopropyl trimethoxy-silane (APS) in the anodic electrolyte to obtain plasma electrolytic oxidation (PEO) ceramic films at a median voltage of 200 V. The addition of silane in Na2SiO3 solution does not change the phase compositions of the PEO films while promoting the faster growth of both rutile and anatase, meanwhile smoother and thicker ceramic films with more regular pores on the outer layers are obtained as reflected by the X-ray diffraction spectra (XRD) and scanning electron microscopy (SEM) results, respectively. The wear resistance in dry friction condition of the PEO films with silane addition is improved as seen from their friction coefficient and abrasive track image; the increase in corrosion potential (Ecorr) and decrease in corrosion current density (Icorr) suggest the improvement of their resisting ability to corrosive media, attributing to the formation of compacter inner and outer layer films as supported by the electrochemical impedance spectroscopy. The results of attenuated total reflection-Fourier transform infrared spectra (ATR-FTIR) and X-ray photoelectron spectra (XPS) reveal that APS exists on the surfaces and among the defects of ceramic films by adsorption, self-condensation and/or chemical linkage (Ti–O–Si) as various states, therefore their existence and filling effects result in the improvement in their abrasive and corrosive resistances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Tamilselvi, V. Raman, N. Rajendran, J. Appl. Electrochem. 40, 285 (2010)

    Google Scholar 

  2. J. Chen, F. Yan, B. Chen, J. Wang, Mater. Corros. 64, 394 (2013)

    ADS  Google Scholar 

  3. Y.-L. Cheng, X.-Q. Wu, Z.-G. Xue, E. Matykina, P. Skeldon, G. Thompson, Surf. Coat. Technol. 217, 129 (2013)

    Google Scholar 

  4. P. Li, D. Liu, W. Bao, L. Ma, Y. Duan, Ceram. Int. 44, 18429 (2018)

    Google Scholar 

  5. Y. Duan, D. Liu, B. He, L. Ma, Y. Hu, X. Li, Philos. Mag. Lett. 98, 521 (2018)

    ADS  Google Scholar 

  6. D. Quintero, O. Galvis, J. Calderón, M. Gómez, J. Castaño, F. Echeverría, H. Habazaki, Surf. Coat. Technol. 283, 210 (2015)

    Google Scholar 

  7. K. Tekin, U. Malayoglu, S. Shrestha, Surf. Eng. 32, 435 (2016)

    Google Scholar 

  8. M. Aliofkhazraei, A.S. Rouhaghdam, T. Shahrabi, Surf. Coat. Technol. 205, S41 (2010)

    Google Scholar 

  9. H. Sharifi, M. Aliofkhazraei, G.B. Darband, A.S. Rouhaghdam, Surf. Coat. Technol. 304, 438 (2016)

    Google Scholar 

  10. H. Sharifi, M. Aliofkhazraei, G.B. Darband, A.S. Rouhaghdam, Tribol. Int. 102, 463 (2016)

    Google Scholar 

  11. Z. Yao, Z. Jiang, X. Zhang, J. Am. Ceram. Soc. 89, 2929 (2006)

    Google Scholar 

  12. J. He, Q. Cai, Y. Ji, H. Luo, D. Li, B. Yu, J. Alloys Compd. 482, 476 (2009)

    Google Scholar 

  13. Y. Wang, B. Jiang, L. Guo, T. Lei, Mater. Sci. Technol. 20, 1590 (2004)

    Google Scholar 

  14. W. Simka, R.P. Socha, G. Dercz, J. Michalska, A. Maciej, A. Krząkała, Appl. Surf. Sci. 279, 317 (2013)

    ADS  Google Scholar 

  15. S. Lederer, P. Lutz, W. Fürbeth, Surf. Coat. Technol. 335, 62 (2018)

    Google Scholar 

  16. J. Chen, J. Wang, H. Yuan, Appl. Surf. Sci. 284, 900 (2013)

    ADS  Google Scholar 

  17. J. Wang, Y. Ma, J. Guan, D. Zhang, Surf. Coat. Technol. 338, 14 (2018)

    Google Scholar 

  18. D. Wei, Y. Zhou, D. Jia, Y. Wang, Acta Biomater. 3, 817 (2007)

    Google Scholar 

  19. J. Wheeler, C. Collier, J. Paillard, J. Curran, Surf. Coat. Technol. 204, 3399 (2010)

    Google Scholar 

  20. M. Fazel, H.R. Salimijazi, M. Shamanian, ACS Appl. Mater. Interfaces 10, 15281 (2018)

    Google Scholar 

  21. A. Yetim, Surf. Coat. Technol. 205, 1757 (2010)

    Google Scholar 

  22. L.X. Zhao, L.Y. Zheng, S.G. Zhao, Mater. Lett. 60, 2590 (2006)

    Google Scholar 

  23. S. Kumar, T.S. Narayanan, S.G.S. Raman, S. Seshadri, Mater. Sci. Eng. C 30, 921 (2010)

    Google Scholar 

  24. Y.M. Wang, B.L. Jiang, T.Q. Lei, L.X. Guo, Surf. Coat. Technol. 201, 82 (2006)

    Google Scholar 

  25. M. Fazel, H. Salimijazi, M. Golozar, Appl. Surf. Sci. 324, 751 (2015)

    ADS  Google Scholar 

  26. J. Han, S. Nešić, Y. Yang, B.N. Brown, Electrochim. Acta 56, 5396 (2011)

    Google Scholar 

  27. M. Jamesh, S. Kumar, T.S. Narayanan, J. Mater. Eng. Perform. 21, 900 (2012)

    Google Scholar 

  28. A. Alves, F. Wenger, P. Ponthiaux, J.-P. Celis, A. Pinto, L. Rocha, J. Fernandes, Electrochim. Acta 234, 16 (2017)

    Google Scholar 

  29. S.A. Fadl-allah, Q. Mohsen, Appl. Surf. Sci. 256, 5849 (2010)

    ADS  Google Scholar 

  30. P. Bonora, F. Deflorian, L. Fedrizzi, Electrochim. Acta 41, 1073 (1996)

    Google Scholar 

  31. J. Pan, D. Thierry, C. Leygraf, Electrochim. Acta 41, 1143 (1996)

    Google Scholar 

  32. J. Park, K. Rhee, S. Park, Appl. Surf. Sci. 256, 6945 (2010)

    ADS  Google Scholar 

  33. J.R. Werber, S.K. Bull, M. Elimelech, J. Membr. Sci. 535, 357 (2017)

    Google Scholar 

  34. H. Wu, X. Lu, B. Long, X. Wang, J. Wang, Z. Jin, Mater. Lett. 59, 370 (2005)

    Google Scholar 

  35. X. Yan, G. Xu, Prog. Org. Coat. 73, 232 (2012)

    Google Scholar 

  36. D.G. Kurth, T. Bein, Langmuir 9, 2965 (1993)

    Google Scholar 

  37. Q. Chen, N.L. Yakovlev, Appl. Surf. Sci. 257, 1395 (2010)

    ADS  Google Scholar 

  38. J.P. Matinlinna, L.V. Lassila, P.K. Vallittu, Dent. Mater. 23, 1173 (2007)

    Google Scholar 

  39. H. Li, R. Wang, H. Hu, W. Liu, Appl. Surf. Sci. 255, 1894 (2008)

    ADS  Google Scholar 

  40. M. Rajumon, M. Hegde, C. Rao, Catal. Lett. 1, 351 (1988)

    Google Scholar 

  41. M.J. Kim, K.-D. Kim, H.O. Seo, Y. Luo, N.K. Dey, Y.D. Kim, Appl. Surf. Sci. 257, 2489 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, J. & Guan, J. Morphology, abrasion and corrosion resistance study of the plasma electrolytic oxidation films formed on pure titanium by adding silane in the electrolyte. Appl. Phys. A 126, 288 (2020). https://doi.org/10.1007/s00339-020-03467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03467-9

Keywords

Navigation