Skip to main content
Log in

Electrochemical impedance spectroscopic analysis of aluminum and gallium mixed matrix membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mixed matrix membrane revolutionized the field of electrochemistry with its multiple applications as a solid electrolyte, actuator, sensor, and storage device, because of its better processability, flexibility, and light-weight. The present study is designed to investigate the role of hybrid filler in the electrochemical properties of the mixed matrix membrane. For this purpose, aluminum and gallium hybrids with indole and its derivatives were synthesized using the post-modification method. Then, synthesized hybrids were dispersed evenly into the polysulfone matrix and developed its membrane using the immersion precipitation phase inversion method. The FTIR result of aluminum and gallium hybrids identified the absorption bands of −C=C (1485–1400 cm−1), −CN (1340–1122 cm−1), and –NH (1625–1535 cm−1) with repeating units of Al–O (1178 cm−1) and Ga-O (1132–1117 cm−1). SEM images showed the spherical-shaped aluminum oxide and rod-shaped gallium oxide. XRD pattern corresponded to the cubic and trigonal crystal system of aluminum and gallium oxides. Electrochemical impedance study showed significant improvement in the electrical behavior of aluminum and gallium mixed matrix membranes where aluminum and gallium hybrids as a filler create the continuous network for the easy transportation of the charge carriers. The existence of the peaks at a similar position in both impedance and modulus formalisms suggests relaxations of the same type of charge species at the same type of electroactive region and disclose the real picture of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaafar M (2017) Development of hybrid fillers/polymer nanocomposites for electronic applications. Book: hybrid nanomaterials: advances in energy, environment and polymer Nanocomposites. John Wiley & Sons, Inc., Hoboken, NJ, USA, 349-369

  2. Muntha ST, Kausar A, Siddiq M (2017) A review featuring fabrication, properties, and application of polymeric mixed matrix membrane reinforced with different fillers. Polym-Plast Technol Eng 56:2043–2064

    CAS  Google Scholar 

  3. Subli MH, Omar MF, Zulkepli NN, Othman MBH (2017) The effects of hybrid fillers on thermal, mechanical, physical, and antimicrobial properties of ultrahigh-molecular-weight polyethylene-reinforced composites. Polym Compos 38:1689–1697

    CAS  Google Scholar 

  4. Li M, Su H, Qiu Q, Zhao G, Sun Y, Song W (2014) A quaternized polysulfone membrane for zinc-bromine redox flow battery. J Chem 2014:1–5 (article ID 321629)

    Google Scholar 

  5. Yu BC, Wang YC, Lu HC, Lin HL, Shih CM, Kumar SR, Lue SJ (2017) Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane. Energy 134:802–812

    CAS  Google Scholar 

  6. Martínez-Morlanes MJ, Martos A, Várez A, Levenfeld B (2015) Synthesis and characterization of novel hybrid polysulfone/silica membranes doped with phosphomolybdic acid for fuel cell applications. J Membr Sci 492:371–379

    Google Scholar 

  7. Kravets L, Gil’man A, Yablokov MY (2011) Preparation of metal-polymer composite membranes with conductance asymmetry. Pet Chem 51:634–643

    CAS  Google Scholar 

  8. Rajasudha G, Shankar H, Thangadurai P, Boukos N, Narayanan V, Stephen A (2010) Preparation and characterization of polyindole–ZnO composite polymer electrolyte with LiClO4. Ionics 16:839–848

    CAS  Google Scholar 

  9. Senthilkumar S, Rajendran A (2017) Synthesis, characterization and electrical properties of nano metal and metal-oxide doped with conducting polymer composites by in-situ chemical polymerization. MOJ Polym Sci 1:31

    Google Scholar 

  10. Hong JI, Yeo IH, Paik WK (2001) Conducting polymer with metal oxide for electrochemical capacitor: poly(3,4-ethylenedioxythiophene) RuOx electrode. J Electrochem Soc 148:A156–A163

    CAS  Google Scholar 

  11. Rajasudha G, Jayan LM, Thangadurai P, Boukos N, Narayanan V, Stephen A (2012) Polyindole–CuO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries. Polym Bull 68:181–196

    CAS  Google Scholar 

  12. Hosseini S, Koranian P, Gholami A, Madaeni S, Moghadassi A, Sakinejad P, Khodabakhshi A (2013) Fabrication of mixed matrix heterogeneous ion exchange membrane by multiwalled carbon nanotubes: electrochemical characterization and transport properties of mono and bivalent cations. Desalination 329:62–67

    CAS  Google Scholar 

  13. Khoiruddin K, Wenten IG (2016) Investigation of electrochemical and morphological properties of mixed matrix polysulfone-silica anion exchange membrane. J Eng Technol Sci 48:1–11

    CAS  Google Scholar 

  14. Liu BH, Dou LT, He F, Yang J, Li ZP (2016) A cobalt coordination compound with indole acetic acid for the fabrication of a high-performance cathode catalyst in fuel cells. RSC Adv 6:19025–19033

    CAS  Google Scholar 

  15. Rejani P, Beena B (2013) Structural and optical properties of polyindole-manganese oxide nanocomposite. Indian J Adv Chem Sci 2:244–248

    Google Scholar 

  16. Gupta B, Joshi L, Prakash R (2011) Novel synthesis of polycarbazole–gold nanocomposite. Macromol Chem Phys 212:1692–1699

    CAS  Google Scholar 

  17. Branch M (2011) Preparation of nano-scale α-Al2O3 powder by the sol-gel method. Ceramics–Silikáty 55:378–383

    Google Scholar 

  18. Chave T, Nikitenko SI, Granier D, Zemb T (2009) Sonochemical reactions with mesoporous aluminium oxide. Ultrason Sonochem 16:481–487

    CAS  PubMed  Google Scholar 

  19. Rahbar SF, Meshkani F, Rezaei M (2017) Ultrasound-assisted co-precipitation synthesis and catalytic performance of mesoporous nanocrystalline NiO-Al2O3 powders. Ultrason Sonochem 34:436–447

    Google Scholar 

  20. De Melo PAF, Nijmeijer A, Sripathi VGP, Winnubst L (2015) Chemical modification/grafting of mesoporous aluminium oxide with polydimethylsiloxane (PDMS). Eur J Chem 6:287–295

    Google Scholar 

  21. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites- a review. Prog Polym Sci 38:1232–1261

    CAS  Google Scholar 

  22. Shan JJ, Li CH, Wu JM, Liu JA, Shi YS (2017) Shape-controlled synthesis of monodispersed beta-gallium oxide crystals by a simple precipitation technique. Ceram Int 43:6430–6436

    CAS  Google Scholar 

  23. Parveen K, Rafique U, Akhtar MJ, Ashokumar M (2018) Ultrasound-assisted synthesis of gallium hybrids for environmental remediation application. Ultrason Sonochem 49:222–232

    CAS  PubMed  Google Scholar 

  24. Oh P, Mansur N (2014) Synthesis and characterization of polysulfone/montmorillonite (PSF/MMT) mixed matrix membrane for gas separation. Adv Mater Res 925:18–22

    Google Scholar 

  25. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22(10):1039–1059

    CAS  PubMed  Google Scholar 

  26. Rabiee A, Baharvand H (2015) An organic-inorganic polymeric aluminium oxide hybrid nanocomposite. Polym Sci Ser B 57:264–273

    CAS  Google Scholar 

  27. Girija K, Thirumalairajan S, Mastelaro VR, Mangalaraj D (2015) Photocatalytic degradation of organic pollutants by shape-selective synthesis of β-Ga2O3microspheres constituted by nanospheres for environmental remediation. J Mater Chem A 3(6):2617–2627

    CAS  Google Scholar 

  28. Kang BK, Lim GH, Lim B, Yoon DH (2016) Morphology controllable synthesis and characterization of gallium compound hierarchical structures via forced-hydrolysis method. J Alloys Compd 675:57–63

    CAS  Google Scholar 

  29. Yang JJ, Zhao Y, Frost RL (2009) Infrared and infrared emission spectroscopy of gallium oxide alpha-GaO(OH) nanostructures. Spectrochim Acta A Mol Biomol Spectrosc 74:398–403

    PubMed  Google Scholar 

  30. Trivedi M, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S (2015) Biofield treatment: A potential strategy for modification of the physical and thermal properties of indole. Environ Anal Chem 2(4):152–160

    Google Scholar 

  31. Gómez Costa MB, Juárez JM, Martínez ML, Cussa J, Anunziata OA (2012) Synthesis and characterization of a novel composite: polyindole included in nanostructured Al MCM-41 material. Microporous Mesoporous Mater 15:191–197

    Google Scholar 

  32. Joshi L, Prakash R (2012) Polyindole-au nanocomposite produced at the liquid/liquid interface. Mater Lett 66:250–253

    CAS  Google Scholar 

  33. Joshi L, Singh AK, Prakash R (2012) Polyindole/carboxylated-multiwall carbon nanotube composites produced by in-situ and interfacial polymerization. Mater Chem Phys 135:80–87

    CAS  Google Scholar 

  34. Kathirvel P, Chandrasekaran J, Manoharan D, Kumar S (2014) Preparation and characterization of alpha aluminium oxide nanoparticles by in-flight oxidation of flame synthesis. J Alloys Compd 590:9341–9345

    Google Scholar 

  35. Sifontes A, Urbina M, Fajardo F, Melo L, García L, Mediavilla M, Carrión N, Brito J, Hernandez P, Solano R (2010) Preparation of?-Aluminium oxide foams of high surface area employing the polyurethane sponge replica method. Lat Am Appl Res 40:185–191

    CAS  Google Scholar 

  36. Li L, Wei W, Behrens M (2012) Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation. Solid State Sci 14:971–981

    CAS  Google Scholar 

  37. Bagheri M, Khodadadi AA, Mahjoub AR, Mortazavi Y (2013) Highly sensitive gallium oxide -SnO2 nanocomposite sensors to CO and ethanol in the presence of methane. Sensors Actuators B Chem 188:45–52

    CAS  Google Scholar 

  38. Bagheri M, Mahjoub AR, Khodadadi AA, Mortazavi Y (2014) Fast photocatalytic degradation of congo red using CoO-doped β-Ga2O3 nanostructures. RSC Adv 4:33262–33268

    CAS  Google Scholar 

  39. Bagheri M, Mahjoub AR, Mehri B (2014) Enhanced photocatalytic degradation of Congo red by solvothermally synthesized CuInSe2–ZnO nanocomposites. RSC Adv 4:21757

    CAS  Google Scholar 

  40. Liu J, Duan CG, Yin WG, Mei WN, Smith RW, Hardy JR (2004) Large dielectric constant and Maxwell-Wagner relaxation in Bi2∕ 3 Cu3Ti4O12. Phys Rev B 70:1–7

    Google Scholar 

  41. Barsoukov E, Macdonald JR (eds) (2018) Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons

  42. Iguchi E, Nakamura N, Aoki A (1997) Electrical transport properties in semiconducting BaPbxBi1− xO3 using complex-plane impedance analyses. J Phys Chem Solids 58(5):755–763

    CAS  Google Scholar 

  43. De Bonis C, Cozzi D, Mecheri B, D'Epifanio A, Rainer A, De Porcellinis D, Licoccia S (2014) Effect of filler surface functionalization on the performance of Nafion/titanium oxide composite membranes. Electrochim Acta 137:418–425

    Google Scholar 

  44. Šupová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices: a review. Sci Adv Mater 3:1–25

    Google Scholar 

  45. Gao X, Jang J, Nagase S (2009) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114:832–842

    Google Scholar 

  46. Wang Z, Nelson JK, Hillborg H, Zhao S, Schadler LS (2012) Graphene oxide filled nanocomposite with novel electrical and dielectric properties. Adv Mater 24(23):3134–3137

    CAS  PubMed  Google Scholar 

  47. Gopalan EV, Malini KA, Saravanan S, Kumar DS, Yoshida Y, Anantharaman MR (2008) Evidence for polaron conduction in nanostructured manganese ferrite. J Phys D Appl Phys 41(18):185005

    Google Scholar 

  48. Jayakrishnan P, Pradyumnan PP, Ramesan M (2016) Thermal and electrical properties of polyindole/magnetite nanocomposites. Chemist 89:27–32

    Google Scholar 

  49. Hussain WA, Hussein AA, Khalaf JM, Al-Mowali AH, Sultan AA (2015) Dielectric properties and AC conductivity of epoxy/Alumina silicate NGK composites. Adv Chem Eng Sci 5(03):282

    CAS  Google Scholar 

  50. Ladhar A, Arous M, Kaddami H, Raihane M, Kallel A, Graça M, Costa L (2014) Molecular dynamics of nanocomposites natural rubber/cellulose nanowhiskers investigated by impedance spectroscopy. J Mol Liq 196:187–191

    CAS  Google Scholar 

  51. Nayak L, Khastgir D, Chaki T (2012) Study of alternating current impedance analysis and dielectric properties of carbon nanotube-based polysulfone nanocomposites. Polym Compos 33:85–91

    CAS  Google Scholar 

  52. Hanai T (1962) Dielectric theory on the interfacial polarization for two-phase mixtures. Bulletin of the Institute for Chemical Research, Kyoto University. Bull Chem Res 39(6):341–367 http://hdl.handle.net/2433/75873. Accessed 15 June 2018

  53. Younas M, Zou LL, Nadeem MSSC, Wang ZL, Anwand W et al (2014) Impedance analysis of secondary phases in a co-implanted ZnO single crystal. Phys Chem Chem Phys 16(30):16030–16038

    CAS  PubMed  Google Scholar 

  54. Macedo PB, Moynihan CT, Bose R (1972) The long time aspects of this correlation function, which are obtainable by bridge techniques at temperatures approaching the glass transition. Phys Chem Glasses 13:171

  55. Provenzano V, Boesch LP, Volterra V, Moynihan CT, Macedo PB (1972) Electrical relaxation in Na2O·3SiO2 glass. J Am Ceram Soc 55(10):492–496

    CAS  Google Scholar 

  56. Singh L, Kim IW, Sin BC, Ullah A, Woo SK, Lee Y (2015) Study of dielectric, AC-impedance, modulus properties of 0.5 Bi0.5Na0.5TiO3·0.5 CaCu3Ti4O12 nano-composite synthesized by a modified solid state method. Mater Sci Semicond Process 31:386–396

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the University of Melbourne, Fatima Jinnah Women University and Pakistan Institute of Nuclear Science and Technology (PINSTECH), Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousar Parveen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parveen, K., Rafique, U., Akhtar, M.J. et al. Electrochemical impedance spectroscopic analysis of aluminum and gallium mixed matrix membranes. J Solid State Electrochem 24, 961–974 (2020). https://doi.org/10.1007/s10008-020-04548-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04548-8

Keywords

Navigation