Skip to main content
Log in

Polyaniline-derived nitrogen- and oxygen-decorated hierarchical porous carbons as an efficient electrode material for supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline-derived oxygen- and nitrogen-decorated hierarchical porous carbons (N/O-HPC) are easily prepared by fast electrochemical polymerization combined with pyrolysis process. During the heating process, perchloric acid was decomposed to produce oxygen which could react with PANI-derived carbon to form a porous structure. The XPS results show the content of oxygen and nitrogen functional groups in the porous carbon matrix is 4.31% and 4.42%, respectively, and the BET results show that the specific surface area of the porous carbon is 1197.4 m2 g−1. The high content of oxygen and nitrogen functional groups as well as the high specific surface area is beneficial to N/O-HPC materials as supercapacitors. Typically, N/O-HPC displays a high specific capacitance of 419.8 F g−1, 179.8 F g−1, and 343.2 F g−1 at 0.2 A g−1 in 1 M H2SO4, 0.5 M K2SO4, and 6 M KOH electrolytes, respectively. Specially, the maintenance of capacitance is over 93% after 5000 cycles at 5 A g−1 in all three electrolyte solutions. The outstanding electrochemical performance of N/O-HPC can be ascribed to the introduction of nitrogen and oxygen functional groups in porous carbon matrix and the formation of special porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew Sust Energ Rev 101:123–145

    CAS  Google Scholar 

  2. Zdolsek N, Rocha RP, Krstic J, Trtic-Petrovic T, Sljukic B, Figueiredo JL, Vujkovic MJ (2019) Electrochemical investigation of ionic liquid-derived porous carbon materials for supercapacitors: pseudocapacitance versus electrical double layer. Electrochim Acta 298:541–551

    CAS  Google Scholar 

  3. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7(9):637–644

    CAS  Google Scholar 

  4. Wang G, Zhang Y, Zhou F, Sun Z, Huang F, Yu Y, Chen L, Pan M (2016) Simple and fast synthesis of polyaniline nanofibers/carbon paper composites as supercapacitor electrodes. J Energy Storage 7:99–103

    Google Scholar 

  5. Lee HW, Shinde NM, Shinde PV, Yun JM, Song PK, Kim KH (2019) High energy and power density of self-grown CuS@Cu2O core-shell supercapattery positrode. J Solid State Electrochem 23(9):2609–2617

    CAS  Google Scholar 

  6. Ciszewski M, Koszorek A, Radko T, Szatkowski P, Janas D (2019) Review of the selected carbon-based materials for symmetric supercapacitor application. J Electron Mater 48(2):717–744

    CAS  Google Scholar 

  7. Cherusseri J, Kumar KS, Choudhary N, Nagaiah N, Jung Y, Roy T, Thomas J (2019) Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors. Nanotechnology 30(20):202001

    CAS  PubMed  Google Scholar 

  8. Ke C-C, Zhang N, Liu F, Yu Q, Wang F-Y, Liu L, Zhang R-L, Liu X, Zeng R-C (2019) Deflated balloon-like nitrogen-rich sulfur-containing hierarchical porous carbons for high-rate supercapacitors. Appl Surf Sci 484:716–725

    CAS  Google Scholar 

  9. Sun F, Qu Z, Gao J, Wu HB, Liu F, Han R, Wang L, Pei T, Zhao G, Lu Y (2018) In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance. Adv Funct Mater 28(41)

  10. Li J, Li X, Xiong D, Wang L, Li D (2019) Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors. Appl Surf Sci 475:285–293

    CAS  Google Scholar 

  11. Kang W, Lin B, Huang G, Zhang C, Hou W, Yao Y, Xu B, Xing B (2017) Nitrogen and oxygen co-doped porous carbon for high performance supercapacitors. J Mater Sci-Mater Electron 29(4):3340–3347

    Google Scholar 

  12. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem 4(4):1144–1173

    CAS  Google Scholar 

  13. He D, Niu J, Dou M, Ji J, Huang Y, Wang F (2017) Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochim Acta 238:310–318

    CAS  Google Scholar 

  14. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    CAS  Google Scholar 

  15. He D, Huang Z-H, Wang M-X (2018) Porous nitrogen and oxygen co-doped carbon microtubes derived from plane tree fruit fluff for high-performance supercapacitors. J Mater Sci-Mater Electron 30(2):1468–1479

    Google Scholar 

  16. Jain A, Tripathi SK (2013) Converting eucalyptus leaves into mesoporous carbon for its application in quasi solid-state supercapacitors. J Solid State Electrochem 17(9):2545–2550

    CAS  Google Scholar 

  17. Zhang L, Xu L, Zhang Y, Zhou X, Zhang L, Yasin A, Wang L, Zhi K (2018) Facile synthesis of bio-based nitrogen- and oxygen-doped porous carbon derived from cotton for supercapacitors. RSC Adv 8(7):3869–3877

    CAS  Google Scholar 

  18. Yuan C, Liu X, Jia M, Luo Z, Yao J (2015) Facile preparation of N- and O-doped hollow carbon spheres derived from poly(o-phenylenediamine) for supercapacitors. J Mater Chem 3(7):3409–3415

    CAS  Google Scholar 

  19. Mentus S, Ćirić-Marjanović G, Trchova M, Stejskal J (2009) Conducting carbonized polyaniline nanotubes. Nanotechnology 20(24):245601

    PubMed  Google Scholar 

  20. Ma G, Yang Q, Sun K, Peng H, Ran F, Zhao X, Lei Z (2015) Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor. Bioresour Technol 197:137–142. https://doi.org/10.1016/j.biortech.2015.07.100

    Article  CAS  PubMed  Google Scholar 

  21. Zuo S, Chen J, Liu W, Li X, Kong Y, Yao C, Fu Y (2018) Preparation of 3D interconnected hierarchical porous N-doped carbon nanotubes. Carbon 129:199–206

    CAS  Google Scholar 

  22. Kobayashi H, Sakurai T, Nishiyama M, Nishioka Y (2001) Formation of a SiO2/SiC structure at 203 degrees C by use of perchloric acid. Appl Phys Lett 78(16):2336–2338

    CAS  Google Scholar 

  23. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13(10):3169–3183

    CAS  Google Scholar 

  24. Wang C, Sun L, Zhou Y, Wan P, Zhang X, Qiu J (2013) P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors. Carbon 59:537–546

    CAS  Google Scholar 

  25. Gavrilov N, Pašti IA, Vujković M, Travas-Sejdic J, Ćirić-Marjanović G, Mentus SV (2012) High-performance charge storage by N-containing nanostructured carbon derived from polyaniline. Carbon 50(10):3915–3927

    CAS  Google Scholar 

  26. Yan Y, Tang H, Wu F, Wang R, Pan M (2017) One-step self-assembly synthesis α-Fe2O3 with carbon-coated nanoparticles for stabilized and enhanced supercapacitors electrode. Energies 10(9):1296

    Google Scholar 

  27. Cheng M, Meng Y, Meng Q, Mao L, Zhang M, Amin K, Ahmad A, Wu S, Wei Z (2018) A hierarchical porous N-doped carbon electrode with superior rate performance and cycling stability for flexible supercapacitors. Mater Chem Front 2(5):986–992

    CAS  Google Scholar 

  28. Serwar M, Rana UA, Siddiqi HM, Khan SU-D, Ali FAA, Al-Fatesh A, Adomkevicius A, Coca-Clemente JA, Cabo-Fernandez L, Braga F, Hardwick LJ (2017) Template-free synthesis of nitrogen doped carbon materials from an organic ionic dye (murexide) for supercapacitor application. RSC Adv 7(86):54626–54637

    CAS  Google Scholar 

  29. Panja T, Bhattacharjya D, Yu J-S (2015) Nitrogen and phosphorus co-doped cubic ordered mesoporous carbon as a supercapacitor electrode material with extraordinary cyclic stability. J Mater Chem 3(35):18001–18009

    CAS  Google Scholar 

  30. Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim J-H, Park SB (2014) Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochim Acta 116:118–128

    CAS  Google Scholar 

  31. Yang W, Yang W, Song A, Gao L, Su L, Shao G (2017) Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. J Power Sources 359:556–567

    CAS  Google Scholar 

  32. Lufrano F, Staiti P (2010) Influence of the surface—chemistry of modified mesoporous carbon on the electrochemical behavior of solid-state supercapacitors. Energy Fuel 24(6):3313–3320

    CAS  Google Scholar 

  33. Sugimoto W, Kizaki T, Yokoshima K, Murakami Y, Takasu Y (2004) Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochim Acta 49(2):313–320

    CAS  Google Scholar 

  34. Hulicova D, Yamashita J, Soneda Y, Hatori H, Kodama M (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17(5):1241–1247

    CAS  Google Scholar 

  35. He Q, Liu J, Liu X, Li G, Chen D, Deng P, Liang J (2018) Fabrication of amine-modified magnetite-electrochemically reduced graphene oxide nanocomposite modified glassy carbon electrode for sensitive dopamine determination. Nanomaterials 8(4):194

    PubMed Central  Google Scholar 

  36. Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290

    CAS  Google Scholar 

  37. Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y (2017) Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett 17(5):3097–3104

    CAS  PubMed  Google Scholar 

  38. Zhou X, Wang P, Zhang Y, Wang L, Zhang L, Zhang L, Xu L, Liu L (2017) Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J Mater Chem 5(25):12958–12968

    CAS  Google Scholar 

  39. Zhang JJ, Fan HX, Dai XH, Yuan SJ (2018) Digested sludge-derived three-dimensional hierarchical porous carbon for high-performance supercapacitor electrode. R Soc Open Sci 5(4):172456

    PubMed  PubMed Central  Google Scholar 

  40. Shi Q, Zhang R, Lv Y, Deng Y, Elzatahrya AA, Zhao D (2015) Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84:335–346

    CAS  Google Scholar 

  41. Liu X, Liu X, Sun B, Zhou H, Fu A, Wang Y, Guo Y-G, Guo P, Li H (2018) Carbon materials with hierarchical porosity: effect of template removal strategy and study on their electrochemical properties. Carbon 130:680–691

    CAS  Google Scholar 

  42. Li X, Zhao Y, Bai Y, Zhao X, Wang R, Huang Y, Liang Q, Huang Z (2017) A non-woven network of porous nitrogen-doping carbon nanofibers as a binder-free electrode for supercapacitors. Electrochim Acta 230:445–453

    CAS  Google Scholar 

  43. Zhou J, Xu L, Li L, Li X (2019) Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors. J Colloid Interface Sci 545:25–34

    CAS  PubMed  Google Scholar 

  44. Wang S, Ren Z, Li J, Ren Y, Zhao L, Yu J (2014) Cotton-based hollow carbon fibers with high specific surface area prepared by ammonia etching for supercapacitor application. RSC Adv 4(59):31300–31307

    CAS  Google Scholar 

Download references

Funding

This work was support by the National Key Research and Development Program of China (No. 2016YFB0101300 (2016YFB0101313)) and the Fundamental Research Funds for the Central Universities (WUT: 182443002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yizhi Yan or Mu Pan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Guan, S., Yan, Y. et al. Polyaniline-derived nitrogen- and oxygen-decorated hierarchical porous carbons as an efficient electrode material for supercapacitors. J Solid State Electrochem 24, 951–959 (2020). https://doi.org/10.1007/s10008-020-04545-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04545-x

Navigation