Skip to main content
Log in

Biodegradable Nanocomposites Developed from PLA/PCL Blends and Silk Fibroin Nanoparticles: Study on the Microstructure, Thermal Behavior, Crystallinity and Performance

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Recently, the use of natural materials has grown in the plastics industry. In this study, novel bio-nanocomposites were developed from poly(lactic acid)/poly(ε-caprolactone) (PLA/PCL) blends and silk fibroin nanoparticles (SFNP). SFNP were successfully synthesized from silk fibroin (SF) and analyzed by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained results revealed that the well-ordered structures in SF were changed to the amorphous structures in SFNP. Then (PLA/PCL) blends containing 10–30% of PCL were prepared and characterized. According to the obtained results, the PLA/PCL (70/30) blend was selected as the optimized sample for further studies. The scanning electron microscopy results illustrated that the addition of 1% of SFNP into this blend improved the compatibility between PLA and PCL and reduced the PCL droplet sizes from 1.170 ± 92 to 794 ± 46 nm. The results from TGA analysis indicated that the presence of SFNP enhanced the thermal stability of materials at high temperatures. The crystallization kinetics results revealed that while SFNP promoted the crystallization of neat PLA, the crystallization rate of PLA/PCL blend was decreased upon the incorporation of nanofiller. Furthermore, the PLA/PCL/SFNP exhibited higher microhardness and barrier properties than the neat blend. The results suggest that the developed bio-nanocomposites are promising materials for demanding applications such as food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang D, Lu X, Qu J (2017) Polym Compost 39:3057

    Google Scholar 

  2. Muller J, González-Martínez C, Chiralt A (2017) Materials (Basel) 10:952

    PubMed Central  Google Scholar 

  3. Bharimalla AK, Deshmukh SP, Vigneshwaran N et al (2017) Polym Plast Technol Eng 56:805

    CAS  Google Scholar 

  4. Köhler-Hammer C, Knippers J, Hammer MR (2016) Bio-based Plastic for building facades. Elsevier, Stuttgart

    Google Scholar 

  5. Kellersztein I, Amir E, Dotan A (2016) Polym Adv Technol 27:657

    CAS  Google Scholar 

  6. Yeh J-T, Wu C-J, Tsou C-H et al (2009) Polym Plast Technol Eng 48:571

    CAS  Google Scholar 

  7. Ojijo V, Sinha Ray S, Sadiku R (2013) ACS Appl Mater Interfaces 5:4266

    CAS  PubMed  Google Scholar 

  8. Murariu M, Da Silva FA, Alexandre M, Dubois P (2008) Polym Adv Technol 19:636

    CAS  Google Scholar 

  9. Cheung H-Y, Lau K-T, Pow Y-F et al (2010) Compos Part B Eng 41:223

    Google Scholar 

  10. Hasook A, Tanoue S, Iemoto Y, Unryu T (2006) Polym Eng Sci 46:1001

    CAS  Google Scholar 

  11. Pillin I, Montrelay N, Grohens Y (2006) Polymer (Guildf) 47:4676

    CAS  Google Scholar 

  12. Broz ME, VanderHart DL, Washburn NR (2003) Biomaterials 24:4181

    CAS  PubMed  Google Scholar 

  13. Wu D, Lin D, Zhang J et al (2011) Macromol Chem Phys 212:613

    CAS  Google Scholar 

  14. Hoidy WH, Ahmad MB, Al-Mulla EAJ, Ibrahim NAB (2010) J Appl Sci 10:97

    CAS  Google Scholar 

  15. Decol M, Pachekoski WM, Becker D (2018) J Appl Polym Sci 135:44849

    Google Scholar 

  16. Bouakaz BS, Habi A, Grohens Y, Pillin I (2017) Appl Clay Sci 139:81

    CAS  Google Scholar 

  17. Luzi F, Fortunati E, Puglia D et al (2015) Polym Degrad Stab 121:105

    CAS  Google Scholar 

  18. Yang W, Dominici F, Fortunati E et al (2015) Ind Crops Prod 77:833

    CAS  Google Scholar 

  19. Tesfaye M, Patwa R, Kommadath R et al (2016) Thermochim Acta 643:41

    CAS  Google Scholar 

  20. Koh L-D, Cheng Y, Teng C-P et al (2015) Prog Polym Sci 46:86

    CAS  Google Scholar 

  21. Chomachayi MD, Solouk A, Akbari S et al (2018) J Biomed Mater Res Part A 106:1092

    Google Scholar 

  22. Chomachayi MD, Solouk A, Mirzadeh H (2019) J Ind Text 49:1

    Google Scholar 

  23. Balali S, Davachi SM, Sahraeian R et al (2018) Biomacromol 19:4358

    CAS  Google Scholar 

  24. Patwa R, Kumar A, Katiyar V (2018) J Appl Polym Sci 135:46671

    Google Scholar 

  25. Chomachayi MD, Solouk A, Mirzadeh H (2016) Prog Biomater 5:71

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tao Y, Xu W, Yan Y, Cao Y (2012) Polym Int 61:760

    CAS  Google Scholar 

  27. Haque MM-U, Puglia D, Fortunati E, Pracella M (2017) React Funct Polym 110:1

    CAS  Google Scholar 

  28. Beltrán FR, de la Orden MU, Lorenzo V et al (2016) Polymer (Guildf) 107:211

    Google Scholar 

  29. Beltrán FR, Barrio I, Lorenzo V et al (2019) J Clean Prod 219:46

    Google Scholar 

  30. Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Polym Degrad Stab 133:339

    Google Scholar 

  31. Deroiné M, Le Duigou A, Corre Y-M et al (2014) Polym Degrad Stab 108:319

    Google Scholar 

  32. Itim B, Philip M (2015) Polym Degrad Stab 117:84

    CAS  Google Scholar 

  33. Heseltine PL, Hosken J, Agboh C et al (2019) Macromol Mater Eng 304:1800577

    Google Scholar 

  34. Di Foggia M, Taddei P, Torreggiani A et al (2011) Proteomics Res J 2:231

    Google Scholar 

  35. Lu Q, Zhang B, Li M et al (2011) Biomacromol 12:1080

    CAS  Google Scholar 

  36. Noishiki Y, Nishiyama Y, Wada M et al (2002) J Appl Polym Sci 86:3425

    CAS  Google Scholar 

  37. Chomachayi MD, Solouk A, Mirzadeh H (2019) Fibers Polym 20:1594

    Google Scholar 

  38. Wang R, Pu D, Dong Y et al (2017) Mater Lett 206:5

    CAS  Google Scholar 

  39. Trabbic KA, Yager P (1998) Macromolecules 31:462

    CAS  Google Scholar 

  40. Um IC, Kweon H, Park YH, Hudson S (2001) Int J Biol Macromol 29:91

    CAS  PubMed  Google Scholar 

  41. Ray S, Cooney RP (2018) In: Handbook of environmental degradation of materials. Elsevier, Auckland, p 185

    Google Scholar 

  42. Mamun A, Rahman SMM, Roland S, Mahmood R (2018) J Polym Environ 26:3511

    CAS  Google Scholar 

  43. Magoshi J, Nakamura S (1975) J Appl Polym Sci 19:1013

    CAS  Google Scholar 

  44. Nematollahi M, Jalali-Arani A, Modarress H (2019) Polym Int 68:779

    CAS  Google Scholar 

  45. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2010) Mater Sci Eng C 30:1129

    CAS  Google Scholar 

  46. Edith D, Six J-L, Others (2006) Appl Surf Sci 253:2758

    Google Scholar 

  47. Elzein T, Nasser-Eddine M, Delaite C et al (2004) J Colloid Interface Sci 273:381

    CAS  PubMed  Google Scholar 

  48. Chen C-C, Chueh J-Y, Tseng H et al (2003) Biomaterials 24:1167

    CAS  PubMed  Google Scholar 

  49. Dhar P, Tarafder D, Kumar A, Katiyar V (2016) Polymer (Guildf) 87:268

    CAS  Google Scholar 

  50. Senthil Muthu Kumar T, Rajini N, Siengchin S et al (2019) Int J Polym Anal Charact 24:439

    CAS  Google Scholar 

  51. Yu L, Liu H, Dean K, Chen L (2008) J Polym Sci Part B Polym Phys 46:2630

    CAS  Google Scholar 

  52. Di Lorenzo ML (2006) J Appl Polym Sci 100:3145

    Google Scholar 

  53. Matsuba G, Shimizu K, Wang H et al (2004) Polymer (Guildf) 45:5137

    CAS  Google Scholar 

  54. Suryanegara L, Nakagaito AN, Yano H (2009) Compos Sci Technol 69:1187

    CAS  Google Scholar 

  55. Li H, Huneault MA (2007) Polymer (Guildf) 48:6855

    CAS  Google Scholar 

  56. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP (2005) Thermochim Acta 427:117

    CAS  Google Scholar 

  57. Shin BY et al (2017) Korea Aust Rheol J 29:295

    Google Scholar 

  58. Wurm A, Zhuravlev E, Eckstein K et al (2012) Macromolecules 45:3816

    CAS  Google Scholar 

  59. Tsuji H, Ikada Y (1996) J Appl Polym Sci 60:2367

    CAS  Google Scholar 

  60. Jelcic Z, Holjevac-Grguric T, Rek V (2005) Polym Degrad Stab 90:295

    CAS  Google Scholar 

  61. Moustafa H, Galliard H, Vidal L, Dufresne A (2017) Eur Polym J 87:188

    CAS  Google Scholar 

  62. Chen J-H, Chen C-C, Yang M-C (2011) J Polym Res 18:2151

    CAS  Google Scholar 

  63. Beltrán FR, Gaspar G, Dadras Chomachayi M et al (2020) Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08025-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Perstorp Co. Ltd., Sweden, for supplying the PCL Capa™ 6800, MINECO-Spain (Project CTM2017-88989-P) and Universidad Politécnica de Madrid (Project UPM RP 160543006). This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 860407 BIO-PLASTICS EUROPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Jalali-arani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadras Chomachayi, M., Jalali-arani, A., Beltrán, F.R. et al. Biodegradable Nanocomposites Developed from PLA/PCL Blends and Silk Fibroin Nanoparticles: Study on the Microstructure, Thermal Behavior, Crystallinity and Performance. J Polym Environ 28, 1252–1264 (2020). https://doi.org/10.1007/s10924-020-01684-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01684-0

Keywords

Navigation