Skip to main content
Log in

Advance Study of Cellulose Nanocrystals Properties and Applications

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) received great attention in various fields, because of their high efficacy, high aspect ratio, low density, renewability and non-toxicity which make them ideal candidates. Here, various properties and applications especially, thermal, mechanical, adhesives, coatings etc., to introduce CNCs, a hydrophilic and colloidally stable, rigid rod-shaped bio-based nanomaterial with high strength and high surface area. CNCs enhance properties of different compounds under different conditions. The research in the last decade reveals that couple of years CNCs possesses high nature, than any other kind of compound, widely used in industrial and other products, as well as for human benefits. Over the past decade, CNCs is an abundant natural nanomaterial with great potential, has attracted many researches towards its use. Dispersing in polar solvent, they assemble to form multiphase or higher order structures yielding desirable optical and structural properties. The present review summarizes the recent achievements in the development of CNCs templating, highlights considerable progress has been achieved in addressing these multidimensional properties and potential use of CNCs in a wide range of high-tech applications in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reishofer D, Ehmann HM, Amenitsch H, Gspan C, Fischer R, Plank H, Trimmel G, Spirk S (2017) On the formation of Bi2S3-cellulose nanocomposite films from bismuth xanthates and trimethylsilyl-cellulose. Carbohyd Polym 164:294–300. https://doi.org/10.1016/j.carbpol.2017.02.008

    Article  CAS  Google Scholar 

  2. He JT, Liu ST, Li L, Piao GZ (2017) Lyotropic liquid crystal behavior of carboxylated cellulose nanocrystals. Carbohyd Polym 164:364–369. https://doi.org/10.1016/j.carbpol.2017.01.080

    Article  CAS  Google Scholar 

  3. Vieira da Silva IS, Prado NS, de Melo PG, Arantes DC, Andrade MZ, Otaguro H, Pasquini D (2019) Edible coatings based on apple pectin, cellulose nanocrystals, and essential oil of lemongrass: improving the quality and shelf life of strawberries (Fragaria Ananassa). J Renew Mater 7(1):73–87. https://doi.org/10.32604/jrm.2019.00042

    Article  CAS  Google Scholar 

  4. Criado P, Fraschini C, Jamshidian M, Salmieri S, Safrany A, Lacroix M (2017) Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties. Cellulose 24(5):2111–2124. https://doi.org/10.1007/s10570-017-1241-x

    Article  CAS  Google Scholar 

  5. Dhuiege B, Pecastaings G, Sebe G (2019) Sustainable approach for the direct functionalization of cellulose nanocrystals dispersed in water by transesterification of vinyl acetate. ACS Sustain Chem Eng 7(1):187–196. https://doi.org/10.1021/acssuschemeng.8b02833

    Article  CAS  Google Scholar 

  6. Bondancia TJ, Mattoso LHC, Marconcini JM, Farinas CS (2017) A new approach to obtain cellulose nanocrystals and ethanol from eucalyptus cellulose pulp via the biochemical pathway. Biotechnol Prog 33(4):1085–1095. https://doi.org/10.1002/btpr.2486

    Article  CAS  PubMed  Google Scholar 

  7. Dong F, Yan ML, Jin CD, Li SJ (2017) Characterization of type-II acetylated cellulose nanocrystals with various degree of substitution and its compatibility in PLA films. Polymers 9(8):346. https://doi.org/10.3390/Polym9080346

    Article  PubMed Central  Google Scholar 

  8. De France KJ, Babi M, Vapaavuori J, Hoare T, Moran-Mirabal J, Cranston ED (2019) 2.5D hierarchical structuring of nanocomposite hydrogel films containing cellulose nanocrystals. ACS Appl Mater Interfaces 11(6):6325–6335. https://doi.org/10.1021/acsami.8b16232

    Article  CAS  PubMed  Google Scholar 

  9. Moo-Tun NM, Valadez-Gonzalez A, Uribe-Calderon JA (2019) Thermo-oxidative aging of LDPE/stearoyl chloride-grafted cellulose nanocrystals blown films. J Polym Environ 27(6):1226–1239. https://doi.org/10.1007/s10924-019-01424-z

    Article  CAS  Google Scholar 

  10. Chen JD, Zhou ZX, Chen ZX, Yuan WZ, Li MQ (2017) A fluorescent nanoprobe based on cellulose nanocrystals with porphyrin pendants for selective quantitative trace detection of Hg2+. New J Chem 41(18):10272–10280. https://doi.org/10.1039/c7nj01263b

    Article  CAS  Google Scholar 

  11. Fu TF, Montes F, Suraneni P, Youngblood J, Weiss J (2017) The influence of cellulose nanocrystals on the hydration and flexural strength of portland cement pastes. Polymers 9(9):424. https://doi.org/10.3390/Polym9090424

    Article  PubMed Central  Google Scholar 

  12. Emam HE, Shaheen TI (2019) Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J Polym Environ 27(11):2419–2427. https://doi.org/10.1007/s10924-019-01533-9

    Article  CAS  Google Scholar 

  13. Yu HY, Wang C, Abdalkarim SYH (2017) Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly(lactic acid) nanofibers for controlling long-term in vitro drug release. Cellulose 24(10):4461–4477. https://doi.org/10.1007/s10570-017-1431-6

    Article  CAS  Google Scholar 

  14. Aziz T, Fan H, Haq F, Khan FU, Numan A, Ullah A, Wazir N (2019) Facile modification and application of cellulose nanocrystals. Iran Polym J 28(8):707–724. https://doi.org/10.1007/s13726-019-00734-2

    Article  Google Scholar 

  15. Ching YC, Ali ME, Abdullah LC, Choo KW, Kuan YC, Julaihi SJ, Chuah CH, Liou NS (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23(2):1011–1030. https://doi.org/10.1007/s10570-016-0868-3

    Article  CAS  Google Scholar 

  16. Fayyaz F, Rabbani M, Rahimi R, Rassa M (2019) Preparation, characterization and photo-inactivation of cellulose nanocrystals impregnated with meso-tetrakis(4-nitrophenyl)porphyrin. Iran Chem Commun 7(1):53–62. https://doi.org/10.30473/icc.2019.4217

    Article  CAS  Google Scholar 

  17. Cudjoe E, Younesi M, Cudjoe E, Akkus O, Rowan SJ (2017) Synthesis and fabrication of nanocomposite fibers of collagen-cellulose nanocrystals by coelectrocompaction. Biomacromolecules 18(4):1259–1267. https://doi.org/10.1021/acs.biomac.7b00005

    Article  CAS  PubMed  Google Scholar 

  18. Du WB, Guo J, Li HM, Gao Y (2017) Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of ps microspheres with amino-rich surfaces. ACS Sustain Chem Eng 5(9):7514–7523. https://doi.org/10.1021/acssuschemeng.7b00375

    Article  CAS  Google Scholar 

  19. Gray DG (2016) Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 6(11):213. https://doi.org/10.3390/Nano6110213

    Article  PubMed Central  Google Scholar 

  20. Guo X, Wu YQ, Xie XF (2017) Water vapor sorption properties of cellulose nanocrystals and nanofibers using dynamic vapor sorption apparatus. Sci Rep 7:1–12. https://doi.org/10.1038/S41598-017-14664-7

    Article  Google Scholar 

  21. Little D, Chai-Adisaksopha C, Hillis C, Witt DM, Monreal M, Crowther MA, Siegal DM (2019) Resumption of anticoagulant therapy after anticoagulant-related gastrointestinal bleeding: a systematic review and meta-analysis. Thromb Res 175:102–109. https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  22. De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17(2):649–660. https://doi.org/10.1021/acs.biomac.5b01598

    Article  CAS  PubMed  Google Scholar 

  23. Terrazas-Hernandez JA, Berrios JDJ, Glenn GM, Imam SH, Wood D, Bello-Pérez LA, Vargas-Torres A (2015) Properties of cast films made of chayote (Sechium edule Sw.) tuber starch reinforced with cellulose nanocrystals. J Polym Environ 23(1):30–37. https://doi.org/10.1007/s10924-014-0652-0

    Article  CAS  Google Scholar 

  24. de Dicastillo CL, Garrido L, Alvarado N, Romero J, Palma JL, Galotto MJ (2017) Improvement of polylactide properties through cellulose nanocrystals embedded in poly(vinyl alcohol) electrospun nanofibers. Nanomaterials 7(5):106. https://doi.org/10.3390/Nano7050106

    Article  Google Scholar 

  25. Trinh BM, Mekonnen T (2018) Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer 155:64–74. https://doi.org/10.1016/j.polymer.2018.08.076

    Article  CAS  Google Scholar 

  26. Visanko M, Liimatainen H, Sirvio JA, Mikkonen KS, Tenkanen M, Sliz R, Hormi O, Niinimaki J (2015) Butylamino-functionalized cellulose nanocrystal films: barrier properties and mechanical strength. Rsc Adv 5(20):15140–15146. https://doi.org/10.1039/c4ra15445b

    Article  CAS  Google Scholar 

  27. Cortes-Trivino E, Valencia C, Delgado MA, Franco JM (2018) Rheology of epoxidized cellulose pulp gel-like dispersions in castor oil: influence of epoxidation degree and the epoxide chemical structure. Carbohyd Polym 199:563–571. https://doi.org/10.1016/j.carbpol.2018.07.058

    Article  CAS  Google Scholar 

  28. Zhang E, Yang J, Liu W (2018) Cellulose-based hydrogels with controllable electrical and mechanical properties. Zeitschrift für Physikalische Chemie 232:1707–1716. https://doi.org/10.1515/zpch-2018-1133

    Article  CAS  Google Scholar 

  29. Watermann T, Sebastiani D (2018) Liquid water confined in cellulose with variable interfacial hydrophilicity. Zeitschrift für Physikalische Chemie 232:7–8. https://doi.org/10.1515/zpch-2017-1011

    Article  CAS  Google Scholar 

  30. Jamshaid A, Iqbal J, Hamid A, Ghauri M, Muhammad N, Nasrullah A, Rafiq S, Samad N (2019) Fabrication and evaluation of cellulose-alginate-hydroxyapatite beads for the removal of heavy metal ions from aqueous solutions. Zeitschrift für Physikalische Chemie 233:1351–1375. https://doi.org/10.1515/zpch-2018-1287

    Article  CAS  Google Scholar 

  31. Liu P, Guo X, Nan FC, Duan YX, Zhang JM (2017) Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid. ACS Appl Mater Interfaces 9(3):3085–3092. https://doi.org/10.1021/acsami.6b12953

    Article  CAS  PubMed  Google Scholar 

  32. Tang CX, Spinney S, Shi ZQ, Tang JT, Peng BL, Luo JH, Tam KC (2018) Amphiphilic cellulose nanocrystals for enhanced pickering emulsion stabilization. Langmuir 34(43):12897–12905. https://doi.org/10.1021/acs.langmuir.8b02437

    Article  CAS  PubMed  Google Scholar 

  33. Meirovitch S, Shtein Z, Ben-Shalom T, Lapidot S, Tamburu C, Hu X, Kluge JA, Raviv U, Kaplan DL, Shoseyov O (2016) Spider silk-CBD-cellulose nanocrystal composites: mechanism of assembly. Int J Mol Sci 17(9):1573. https://doi.org/10.3390/Ijms17091573

    Article  PubMed Central  Google Scholar 

  34. Salari M, Khiabani MS, Mokarram RR, Ghanbarzadeh B, Kafil HS (2018) Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocolloid 84:414–423. https://doi.org/10.1016/j.foodhyd.2018.05.037

    Article  CAS  Google Scholar 

  35. Saelices CJ, Save M, Capron I (2019) Synthesis of latex stabilized by unmodified cellulose nanocrystals: the effect of monomers on particle size. Polym Chem 10(6):727–737. https://doi.org/10.1039/c8py01575a

    Article  CAS  Google Scholar 

  36. Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018) Advances in cellulose nanomaterials. Cellulose 25(4):2151–2189. https://doi.org/10.1007/s10570-018-1723-5

    Article  CAS  Google Scholar 

  37. Kargarzadeh H, Sheltami RM, Ahmad I, Abdullah I, Dufresne A (2015) Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties. Polymer 71:51–59. https://doi.org/10.1016/j.polymer.2015.06.045

    Article  CAS  Google Scholar 

  38. Xu SH, Girouard N, Schueneman G, Shofner ML, Meredith JC (2013) Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54(24):6589–6598. https://doi.org/10.1016/j.polymer.2013.10.011

    Article  CAS  Google Scholar 

  39. Pinheiro IF, Ferreira FV, Alves GF, Rodolfo A, Morales AR, Mei LHI (2019) Biodegradable PBAT-based nanocomposites reinforced with functionalized cellulose nanocrystals from pseudobombax munguba: rheological, thermal, mechanical and biodegradability properties. J Polym Environ 27(4):757–766. https://doi.org/10.1007/s10924-019-01389-z

    Article  CAS  Google Scholar 

  40. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 102:822–828. https://doi.org/10.1016/j.ijbiomac.2017.04.074

    Article  CAS  PubMed  Google Scholar 

  41. Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym 107:16–24. https://doi.org/10.1016/j.carbpol.2014.02.044

    Article  CAS  Google Scholar 

  42. Lizundia E, Urruchi A, Vilas JL, Leon LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohyd Polym 136:250–258. https://doi.org/10.1016/j.carbpol.2015.09.041

    Article  CAS  Google Scholar 

  43. Zhao JC, Zhao YJ, Wang Z, Peng Z (2016) Effect of polymorphs of cellulose nanocrystal on the thermal properties of poly(lactic acid)/cellulose nanocrystal composites. Eur Phys J E 39(12):1–8. https://doi.org/10.1140/epje/i2016-16118-2

    Article  CAS  Google Scholar 

  44. Xiao H, Zhang WB, Wei YC, Chen LH, Huang LL, Boury B (2018) Carbon/ZnO nanorods composites templated by TEMPO-oxidized cellulose and photocatalytic activity for dye degradation. Cellulose 25(3):1821–1821. https://doi.org/10.1007/s10570-018-1705-7

    Article  CAS  Google Scholar 

  45. da Silva ISV, Neto WPF, Silverio HA, Pasquini D, Andrade MZ, Otaguro H (2017) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Adv Technol 28(8):1005–1012. https://doi.org/10.1002/pat.3734

    Article  CAS  Google Scholar 

  46. Khoshkava V, Kamal MR (2014) Effect of cellulose nanocrystals (CNC) Particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces 6(11):8146–8157. https://doi.org/10.1021/am500577e

    Article  CAS  PubMed  Google Scholar 

  47. Huan S, Liu G, Cheng W, Han G, Bai L (2018) Electrospun poly(lactic acid)-based fibrous nanocomposite reinforced by cellulose nanocrystals: impact of fiber uniaxial alignment on microstructure and mechanical properties. Biomacromolecules 19(3):1037–1046. https://doi.org/10.1021/acs.biomac.8b00023

    Article  CAS  PubMed  Google Scholar 

  48. Deng F, Li MC, Ge X, Zhang YH, Cho UR (2017) Cellulose nanocrystals/poly(methyl methacrylate) nanocomposite films: effect of preparation method and loading on the optical, thermal, mechanical, and gas barrier properties. Polym Compos 38:E137–E146. https://doi.org/10.1002/pc.23875

    Article  CAS  Google Scholar 

  49. Mi HY, Jing X, Peng J, Salick MR, Peng XF, Turng LS (2014) Poly(epsilon-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 21(4):2727–2741. https://doi.org/10.1007/s10570-014-0327-y

    Article  CAS  Google Scholar 

  50. Jahan Z, Niazi MBK, Gregersen OW (2018) Mechanical, thermal and swelling properties of cellulose nanocrystals/PVA nanocomposites membranes. J Ind Eng Chem 57:113–124. https://doi.org/10.1016/j.jiec.2017.08.014

    Article  CAS  Google Scholar 

  51. Panyasiri P, Lam NT, Sukyai P (2019) The effect of hydroxyapatite prepared by in situ synthesis on the properties of poly(vinyl alcohol)/cellulose nanocrystals biomaterial. J Polym Environ 28:141–151. https://doi.org/10.1007/s10924-019-01599-5

    Article  CAS  Google Scholar 

  52. Gicquel E, Martin C, Yanez JG, Bras J (2017) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52(6):3048–3061. https://doi.org/10.1007/s10853-016-0589-x

    Article  CAS  Google Scholar 

  53. Aziz T, Fan H, Zhang X, Khan FU (2019) Synergistic impact of cellulose nanocrystals and calcium sulfate fillers on adhesion behavior of epoxy resin. Mater Res Express 6(11):1150–1157. https://doi.org/10.1088/2053-1591/ab4df6

    Article  Google Scholar 

  54. Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as a base matrix. Rsc Adv 6(77):73879–73886. https://doi.org/10.1039/c6ra10993d

    Article  CAS  Google Scholar 

  55. Meesorn W, Shirole A, Vanhecke D, de Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50(6):2364–2374. https://doi.org/10.1021/acs.macromol.6b02629

    Article  CAS  Google Scholar 

  56. Tanpichai S, Oksman K (2018) Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: mechanical and thermal properties. J Appl Polym Sci 135(3):45710. https://doi.org/10.1002/App.45710

    Article  Google Scholar 

  57. Peng C, Dong B, Zhang C, Hu Y, Liu L, Zhang X (2018) A host-guest interaction assisted approach for fabrication of polybutadiene nanocomposites reinforced with well-dispersed cellulose nanocrystals. Macromolecules 51(12):4578–4587. https://doi.org/10.1021/acs.macromol.8b00606

    Article  CAS  Google Scholar 

  58. Liu S, Jin M, Chen YH, Gao HC, Shi XT, Cheng WH, Ren L, Wang YJ (2017) High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths. J Mater Chem B 5(14):2671–2678. https://doi.org/10.1039/c7tb00145b

    Article  CAS  Google Scholar 

  59. Shamsabadi MK, Moghbeli MR (2017) Cellulose nanocrystals (CNCs) reinforced acrylic pressure-sensitive adhesives (PSAs) prepared via miniemulsion polymerization. Int J Adhes Adhes 78:155–166. https://doi.org/10.1016/j.ijadhadh.2017.06.024

    Article  CAS  Google Scholar 

  60. Lahiji RR, Boluk Y, McDermott M (2012) Adhesive surface interactions of cellulose nanocrystals from different sources. J Mater Sci 47(9):3961–3970. https://doi.org/10.1007/s10853-012-6247-z

    Article  CAS  Google Scholar 

  61. Abushammala H, Goldsztayn R, Leao A, Laborie MP (2016) Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose 23(3):1813–1823. https://doi.org/10.1007/s10570-016-0911-4

    Article  CAS  Google Scholar 

  62. d'Eon J, Zhang W, Chen L, Berry RM, Zhao BX (2017) Coating cellulose nanocrystals on polypropylene and its film adhesion and mechanical properties. Cellulose 24(4):1877–1888. https://doi.org/10.1007/s10570-017-1222-0

    Article  CAS  Google Scholar 

  63. Fotie G, Rampazzo R, Ortenzi MA, Checchia S, Fessas D, Piergiovanni L (2017) The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polymers 9(9):415. https://doi.org/10.3390/Polym9090415

    Article  PubMed Central  Google Scholar 

  64. Gupta A, Simmons W, Schueneman GT, Mintz EA (2016) Lignin-coated cellulose nanocrystals as promising nucleating agent for poly(lactic acid). J Therm Anal Calorim 126(3):1243–1251. https://doi.org/10.1007/s10973-016-5657-6

    Article  CAS  Google Scholar 

  65. Hoeger I, Rojas OJ, Efimenko K, Velev OD, Kelley SS (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7(5):1957–1967. https://doi.org/10.1039/c0sm01113d

    Article  CAS  Google Scholar 

  66. Huang JD, Lyu SY, Fu F, Wu Y, Wang SQ (2017) Green preparation of a cellulose nanocrystals/polyvinyl alcohol composite superhydrophobic coating. Rsc Adv 7(33):20152–20159. https://doi.org/10.1039/c6ra27663f

    Article  CAS  Google Scholar 

  67. Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20(5):2491–2504. https://doi.org/10.1007/s10570-013-0015-3

    Article  CAS  Google Scholar 

  68. Meulendijks N, Burghoorn M, van Ee R, Mourad M, Mann D, Keul H, Bex G, van Veldhoven E, Verheijen M, Buskens PBA (2017) Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24(5):2191–2204. https://doi.org/10.1007/s10570-017-1240-y

    Article  CAS  Google Scholar 

  69. Bagheriasl D, Carreau PJ, Dubois C, Riedl B (2015) Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites. In: Proceedings of Pps-30: the 30th international conference of the polymer processing society, p 1664. https://doi.org/10.1063/1.4918445

  70. Li MC, Wu QL, Song KL, De Hoop CF, Lee S, Qing Y, Wu YQ (2016) Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind Eng Chem Res 55(1):133–143. https://doi.org/10.1021/acs.iecr.5b03510

    Article  CAS  Google Scholar 

  71. Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365. https://doi.org/10.1016/j.eurpolymj.2017.10.026

    Article  CAS  Google Scholar 

  72. Qiao CD, Chen GX, Zhang JL, Yao JS (2016) Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloid 55:19–25. https://doi.org/10.1016/j.foodhyd.2015.11.005

    Article  CAS  Google Scholar 

  73. Sojoudiasli H, Heuzey MC, Carreau PJ, Riedl B (2017) Rheological behavior of suspensions of modified and unmodified cellulose nanocrystals in dimethyl sulfoxide. Rheol Acta 56(7–8):673–682. https://doi.org/10.1007/s00397-017-1022-3

    Article  CAS  Google Scholar 

  74. Cai T, Liu D, Qiu WF, Han WJ, Zhao T (2018) Polymer precursor-derived HfC-SiC ultrahigh-temperature ceramic nanocomposites. J Am Ceram Soc 101(1):20–24. https://doi.org/10.1111/jace.15192

    Article  CAS  Google Scholar 

  75. Kumar A, Lee Y, Kim D, Rao KM, Kim J, Park S, Haider A, Lee DH, Han SS (2017) Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol 95:962–973. https://doi.org/10.1016/j.ijbiomac.2016.10.085

    Article  CAS  PubMed  Google Scholar 

  76. Qiu-Hong C, Tong-Xun L, Chuan-He T (2019) Tuning the stability and microstructure of fine Pickering emulsions stabilized by cellulose nanocrystals. Ind Crops Prod 141:111733. https://doi.org/10.1016/j.indcrop.2019.111733

    Article  CAS  Google Scholar 

  77. Kim MS, Ryu KM, Lee SH, Choi YC, Jeong YG (2019) Influences of cellulose nanofibril on microstructures and physical properties of waterborne polyurethane-based nanocomposite films. Carbohyd Polym 225:115233. https://doi.org/10.1016/j.carbpol.2019.115233

    Article  CAS  Google Scholar 

  78. Liu S, Zhu Y, Wu Y, Lue A, Zhang C (2019) Hydrophobic modification of regenerated cellulose microparticles with enhanced emulsifying capacity for O/W Pickering emulsion. Cellulose 26(10):6215–6228. https://doi.org/10.1007/s10570-019-02538-2

    Article  CAS  Google Scholar 

  79. Claramunt J, Ventura H, Toledo RD, Ardanuy M (2019) Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices. Cem Concr Res 119:64–76. https://doi.org/10.1016/j.cemconres.2019.02.006

    Article  CAS  Google Scholar 

  80. Xu Q, Gao Y, Qin M, Wu K, Fu Y, Zhao J (2013) Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp. Int J Biol Macromol 60:241–247. https://doi.org/10.1016/j.ijbiomac.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  81. Sun B, Hou Q, Liu Z, He Z, Ni Y (2014) Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose 21:2879–2887. https://doi.org/10.1007/s10570-014-0283-6

    Article  CAS  Google Scholar 

  82. Ndong Ntoutoume GMA, Granet R, Mbakidi JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V (2016) Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett 26(3):941–945. https://doi.org/10.1016/j.bmcl.2015.12.060

    Article  CAS  PubMed  Google Scholar 

  83. Dong S, Cho HJ, Lee YW, Roman M (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15(5):1560–1567. https://doi.org/10.1021/bm401593n

    Article  CAS  PubMed  Google Scholar 

  84. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. https://doi.org/10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  85. Mueller S, Sapkota J, Nicharat A, Zimmermann T, Tingaut P, Weder C, Foster EJ (2015) Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. J Appl Polym Sci. https://doi.org/10.1002/app.41740

    Article  Google Scholar 

  86. Kumar S, Hofmann M, Steinmann B, Foster EJ, Weder C (2012) Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals. ACS Appl Mater Interfaces 4(10):5399–5407. https://doi.org/10.1021/am301321v

    Article  CAS  PubMed  Google Scholar 

  87. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. https://doi.org/10.1002/anie.201001273

    Article  CAS  Google Scholar 

  88. Tang X, Kumar P, Alavi S, Sandeep K (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442. https://doi.org/10.1080/10408398.2010.500508

    Article  CAS  PubMed  Google Scholar 

  89. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline celluloseby acid hydrolysis. Cellulose 13(2):171. https://doi.org/10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  90. Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637. https://doi.org/10.1039/C5GC02500A

    Article  CAS  Google Scholar 

  91. Wei G, Zuo H-F, Guo Y-R, Pan Q-J (2016) Synthesis of ZnO with enhanced photocatalytic activity: a novel approach using nanocellulose. BioResources 11:6244–6253. https://doi.org/10.15376/biores.11.3.6244-6253

    Article  CAS  Google Scholar 

  92. Silbermann S, Weilach C, Kliba G, Fackler K, Potthast A (2017) Improving molar mass analysis of cellulose samples with limited solubility. Carbohyd Polym 178:302–310. https://doi.org/10.1016/j.carbpol.2017.09.031

    Article  CAS  Google Scholar 

  93. Liu J, Plog A, Groszewicz P, Zhao L, Xu Y, Breitzke H, Stark A, Hoffmann R, Gutmann T, Zhang K, Buntkowsky G (2015) Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: synthesis and solid-state NMR characterization. Chemistry 21(35):12414–12420. https://doi.org/10.1002/chem.201501151

    Article  CAS  PubMed  Google Scholar 

  94. Chauhan P, Yan N (2015) Nanocrystalline cellulose grafted phthalocyanine: a heterogeneous catalyst for selective aerobic oxidation of alcohols and alkyl arenes at room temperature in a green solvent. Rsc Adv 5(47):37517–37520. https://doi.org/10.1039/C4RA16869K

    Article  CAS  Google Scholar 

  95. Navarro-Baena I, Kenny J, Peponi L (2014) Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose 21:4231–4246. https://doi.org/10.1007/s10570-014-0446-5

    Article  CAS  Google Scholar 

  96. Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811. https://doi.org/10.1021/ja076196l

    Article  CAS  PubMed  Google Scholar 

  97. Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786. https://doi.org/10.1039/C6NR09494E

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by State Key Laboratory of Chemical Engineering, Zhejiang University 310027 Hangzhou China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Fan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, T., Fan, H., Zhang, X. et al. Advance Study of Cellulose Nanocrystals Properties and Applications. J Polym Environ 28, 1117–1128 (2020). https://doi.org/10.1007/s10924-020-01674-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01674-2

Keywords

Navigation