Skip to main content
Log in

Mechanically Robust Antibacterial Nanopapers Through Mixed Dimensional Assembly for Anionic Dye Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

There is a piqued interest in development of biobased sorbents for water treatment. Here in we reported, the fabrication of mechanically strong nanopapers by mixed dimensional assembly of 1D Cellulose nanofibers and 2D amino functionalized graphene oxide for water treatment. The fabricated amino functionalized GO/ cellulose nanofiber (AMGO-CNF) nanopaper showed superior antibacterial resistance towards Escherichia coli MTCC 1610 and Klebsiella due to the enhanced surface roughness which was confirmed from SEM and AFM studies. The amino group present in the AMGO enhanced the adsorption efficiency of the nanopaper towards methyl orange dye. The fabricated nanopaper showed an adsorption of 11.05 mg/gm 30 mg/L concentration at pH 2. Maximum adsorption was observed at pH 2 which was due to protonation of amine group. Moreover, the fabricated membrane showed excellent hydrolytic stability which can be corroborated to the surface roughness and reduced hydrophilicity. The investigation into the surface chemistries of cellulose nanofibers beyond the adoption of toxic solvents can enhance the economic usefulness of the process and yield a new eco-friendly adsorbent material that is agreeable to adsorbing various toxic pollutants.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pathan TS, Thete PB, Shinde SE, Sonawane DL, Khillare YK (2009) J Bot Res Int 21:71–78

    Google Scholar 

  2. Ebenstein A (2012) Rev Econ Stat 94:186–201

    Article  Google Scholar 

  3. Haq I, Raj A (2018) Emerging eco-friendly approaches for waste management. Springer, Singapore, pp 121–142

    Google Scholar 

  4. Pfaller MA, Flamm RK, Mendes RE, Streit JM, Smart JI, Hamed KA, Duncan LR, Sader HS (2018) Antimicrob Agents Chemother 63:1–12

    Article  Google Scholar 

  5. Koksal E, Tulek N, Sonmezer MC, Temocin F, Bulut C, Hatipoglu C, Erdinc FS, Ertem G (2019) Invest Clin Urol 60:46–53

    Article  Google Scholar 

  6. Odonkor ST, Ampofo JK (2013) Microbiol Res (Pavia) 4:2

    Article  Google Scholar 

  7. Yadollahpour A, Rashidi S, Ghotbeddin Z, Jalilifar M, Rezaee Z (2014) J Pure Appl Microbiol 8:3711–3719

    CAS  Google Scholar 

  8. Castaing JB, Massé A, Pontié M, Séchet V, Haure J, Jaouen P (2010) Desalination 253:71–77

    Article  CAS  Google Scholar 

  9. Liang Y, Kim S, Kallem P, Choi H (2019) Chemosphere 221:479–485

    Article  CAS  Google Scholar 

  10. Andreeßen B, Lange AB, Robenek H, Steinbüchel A (2010) Appl Environ Microbiol 76:622–626

    Article  Google Scholar 

  11. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Carbohydr Polym 94:154–169

    Article  CAS  Google Scholar 

  12. Zhao J, Zhang W, Zhang X, Zhang X, Lu C, Deng Y (2013) Carbohydr Polym 97:695–702

    Article  CAS  Google Scholar 

  13. Valencia L, Arumughan V, Jalvo B, Maria HJ, Thomas S, Mathew AP (2019) ACS Omega 4:4330–4338

    Article  CAS  Google Scholar 

  14. Zhao Y, Moser C, Lindstrom ME, Henriksson G, Li J (2017) ACS Appl Mater Interfaces 9:13508–13519

    Article  CAS  Google Scholar 

  15. Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Eur Polym J 49:3144–3154

    Article  Google Scholar 

  16. Nechyporchuk O, Belgacem MN, Bras J (2016) Ind Crop Prod 93:2–25

    Article  CAS  Google Scholar 

  17. Xu X, Zhao G, Wang H, Li X, Feng X, Cheng B, Shi L, Kang W, Zhuang X, Yin Y (2019) J Power Sources 409:123–131

    Article  CAS  Google Scholar 

  18. Compton OC, Nguyen ST (2010) Small 22:711–723

    Article  Google Scholar 

  19. Kim F, Cote LJ, Huang J (2010) Adv Mater 22:1954–1958

    Article  CAS  Google Scholar 

  20. Zhu C, Liu P, Mathew AP (2017) ACS Appl Mater Interfaces 9(24):21048–21058

    Article  CAS  Google Scholar 

  21. Fryczkowska B, Wiechniak K (2017) Polish J Chem Technol 19:41–49

    Article  CAS  Google Scholar 

  22. Meng et al (2017) J Mech Phys Solids 103:22–39

    Article  CAS  Google Scholar 

  23. Meng et al (2018) Eng Fract Mech 194:350–361

    Article  Google Scholar 

  24. Meng, Wang (2019) Appl Mech Rev 71(4):040801

    Article  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  26. Zhao D, Gao X, Wu C, Xie R, Feng S, Chen C (2016) Appl Surf Sci 384:1–9

    Article  CAS  Google Scholar 

  27. Annadurai G, Juang RS, Lee DJ (2002) J Hazard Mater 92:263–274

    Article  CAS  Google Scholar 

  28. Elias E, Chandran S, Zachariah AK, Vineesh Kumar VK, Sunil MA, Bose S, Souza FG, Thomas S (2016) RSC Adv 6:85107–85116

    Article  CAS  Google Scholar 

  29. Shanmugharaj AM, Yoon JH, Yang WJ, Ryu SH (2013) J Colloid Interface Sci 401:148–154

    Article  CAS  Google Scholar 

  30. Zhang W, Ma J, Gao D, Zhou Y, Li C (2016) Prog Org Coat 94:9–17

    Article  CAS  Google Scholar 

  31. Gopakumar DA, Pai AR, Pottathara YB, Pasquini D, Carlos L, De Morais M, Luke N, Kalarikkal Y, Grohens, Thomas S (2018) ACS Appl Mater Interfaces 10:20032–20043

    Article  CAS  Google Scholar 

  32. Garside P, Wyeth P (2006) Stud Conserv 51:205–211

    Article  CAS  Google Scholar 

  33. Mahdavi H, Kahriz PK, Rajbar HG, Shahalizade T (2017) J Mater Sci Mater Electron 28:4295–4305

    Article  CAS  Google Scholar 

  34. Phiri J, Johansson LS, Gane P, Maloney TC (2018) Nanoscale 10:9569–9582

    Article  CAS  Google Scholar 

  35. Guo J, Kim J (2017) RSC Adv 7:33822–33828

    Article  CAS  Google Scholar 

  36. Gopakumar DA, Pasquini D, Henrique MA, De Morais LC, Grohens Y, Thomas S (2017) ACS Sustain Chem Eng 5:22026–22033

    Article  Google Scholar 

  37. Chakraborty S, Chowdhury S, Das Saha P (2011) Carbohydr Polym 86:1533–1541

    Article  Google Scholar 

  38. Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T (2013) J Chem Eng Data 58:413–421

    Article  CAS  Google Scholar 

  39. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  40. Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Carbohydr Polym 57:435–440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu A. Gopakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizam, P.A., Arumughan, V., Baby, A. et al. Mechanically Robust Antibacterial Nanopapers Through Mixed Dimensional Assembly for Anionic Dye Removal. J Polym Environ 28, 1279–1291 (2020). https://doi.org/10.1007/s10924-020-01681-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01681-3

Keywords

Navigation