Skip to main content
Log in

Preparation and characterization of MnTiO3, FeTiO3, and CoTiO3 nanoparticles and investigation various applications: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The fabrication of nanoceramices and nanomaterials with desirable morphology, structure, and particle size is one of the most important fields in the nanoscience. In order to achieve this goal, the sol–gel method is one of the most applicable methods which allow us to attain desirable structures by changing some parameters. This review focuses on the synthesis of some MTiO3 (M = transition metals) by different routs owing to the technological importance of this group of materials. It also investigates different properties of such materials including photocatalytic, dielectric, optical and electrocatalytic behaviors. The conventional titanates of MnTiO3, FeTiO3, and CoTiO3 are introduced and furthermore, their syntheses have been clarified by proposing a related mechanism. The effects of reactants concentration, time and temperature reaction, surfactant, M2+ and Ti4+ sources, etc. on the particle size, morphology, and some properties of the obtained nanomaterials have been investigated. The size and morphology of the as-synthesized samples are studied by the X-ray diffraction, scanning electron microscopy and transmission electron microscopy images. The optical, magnetic, and photocatalytic properties of the MTiO3 are studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci.: Mater. Electron. 26(12), 9776–9781 (2015)

    CAS  Google Scholar 

  2. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(11), 11691–11697 (2016)

    CAS  Google Scholar 

  3. R. Padash, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Mirmotahari, H. Ehrlich, A. Rad et al., Is it possible to use X 12 Y 12 (X = Al, B, and Y = N, P) nanocages for drug-delivery systems? A DFT study on the adsorption property of 4-aminopyridine drug. Appl. Phys. A 124(9), 582 (2018)

    Google Scholar 

  4. H.R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 423, 1025–1034 (2017)

    CAS  Google Scholar 

  5. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)

    CAS  Google Scholar 

  6. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43(11), 6155–6165 (2017)

    CAS  Google Scholar 

  7. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)

    CAS  Google Scholar 

  8. J. Amani, M. Maleki, A. Khoshroo, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem. 548, 53–59 (2018)

    CAS  Google Scholar 

  9. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757–3769 (2018)

    CAS  Google Scholar 

  10. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich et al., Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)

    CAS  Google Scholar 

  11. F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29(16), 13737–13745 (2018)

    CAS  Google Scholar 

  12. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, New method for synthesis of BaFe12O19/Sm2Ti2O7 and BaFe12O19/Sm2Ti2O7/Ag nano-hybrid and investigation of optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 30(6), 5854–5865 (2019)

    CAS  Google Scholar 

  13. M.A. Marsooli, M. Rahimi-Nasrabadi, M. Fasihi-Ramandi, K. Adib, M. Eghbali-Arani, F. Ahmadi et al., Preparation of Fe3O4/SiO2/TiO2/CeVO4 nanocomposites: investigation of photocatalytic effects on organic pollutants, bacterial environments and new potential therapeutic candidate against cancer cells. Front. Pharmacol. 11, 192 (2020)

    Google Scholar 

  14. A. Sobhani-Nasab, S. Behvandi, M.A. Karimi, E. Sohouli, M.S. Karimi, N. Gholipour et al., Synergetic effect of graphene oxide and C3N4 as co-catalyst for enhanced photocatalytic performance of dyes on Yb2 (MoO4)3/YbMoO4 nanocomposite. Ceram. Int. 45(14), 17847–17858 (2019)

    CAS  Google Scholar 

  15. M.A. Marsooli, M. Fasihi-Ramandi, K. Adib, S. Pourmasoud, F. Ahmadi, M.R. Ganjali et al., Preparation and characterization of magnetic Fe3O4/CdWO4 and Fe3O4/CdWO4/PrVO4 nanoparticles and investigation of their photocatalytic and anticancer properties on PANC1 cells. Materials 12(19), 3274 (2019)

    CAS  Google Scholar 

  16. A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, F. Ahmadi, Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchem. J. 145, 1185–1190 (2019)

    CAS  Google Scholar 

  17. S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol–gel method. J. Mater. Sci.: Mater. Electron. 26(8), 6086–6091 (2015)

    CAS  Google Scholar 

  18. A. Sobhani-Nasab, M. Behpour, Synthesis, characterization, and morphological control of Eu2Ti2O7 nanoparticles through green method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(11), 11946–11951 (2016)

    CAS  Google Scholar 

  19. S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Precipitation synthesis, characterization, morphological control, and photocatalyst application of ZnWO4 nanoparticles. J. Electron. Mater. 45(7), 3612–3620 (2016)

    CAS  Google Scholar 

  20. A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of AgO nanostructures by precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(2), 1191–1196 (2016)

    CAS  Google Scholar 

  21. A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, Novel sol–gel method for synthesis of PbTiO3 and its light harvesting applications. J. Mater. Sci.: Mater. Electron. 26(12), 9552–9560 (2015)

    CAS  Google Scholar 

  22. M. Ramezani, A. Sobhani-Nasab, A. Davoodi, Bismuth selenide nanoparticles: simple synthesis, characterization, and its light harvesting applications in the presence of novel precursor. J. Mater. Sci.: Mater. Electron. 26(7), 5440–5445 (2015)

    CAS  Google Scholar 

  23. A. Sobhani-Nasab, H. Naderi, M. Rahimi-Nasrabadi, M.R. Ganjali, Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci.: Mater. Electron. 28(12), 8588–8595 (2017)

    CAS  Google Scholar 

  24. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, Green synthesis and characterization of NaEuTi2O6 nanoparticles and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 28(5), 4345–4350 (2017)

    CAS  Google Scholar 

  25. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO4 nanoparticles and its photocatalytic application. J. Mater. Sci.: Mater. Electron. 27(4), 3240–3244 (2016)

    CAS  Google Scholar 

  26. M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, H.G. Estarki, Synthesis, characterization, and morphological control of ZnMoO4 nanostructures through precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 26(10), 7588–7594 (2015)

    CAS  Google Scholar 

  27. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, Simple synthesis and characterization of copper tungstate nanoparticles: investigation of surfactant effect and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(7), 7548–7553 (2016)

    CAS  Google Scholar 

  28. M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and morphological control of Na1/2Bi1/2Cu3Ti4O12 through modify sol–gel method. J. Mater. Sci.: Mater. Electron. 26(7), 4848–4853 (2015)

    CAS  Google Scholar 

  29. A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci.: Mater. Electron. 26(6), 3813–3818 (2015)

    CAS  Google Scholar 

  30. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, M. Mehrzad, Controlling the synthesis SrMoO4 nanostructures and investigation its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(6), 5758–5763 (2016)

    CAS  Google Scholar 

  31. M. Rahimi-Nasrabadi, A. Ghaderi, H.R. Banafshe, M. Eghbali-Arani, M. Akbari, F. Ahmadi et al., Preparation of Co2TiO4/CoTiO3/polyaniline ternary nano-hybrids for enhanced destruction of agriculture poison and organic dyes under visible-light irradiation. J. Mater. Sci.: Mater. Electron. 30(17), 15854–15868 (2019)

    CAS  Google Scholar 

  32. S.M. Asgarian, S. Pourmasoud, Z. Kargar, A. Sobhani-Nasab, M. Eghbali-Arani, Investigation of positron annihilation lifetime and magnetic properties of Co1xCuxFe2O4 nanoparticles. Mater. Res. Express 6(1), 015023 (2018)

    Google Scholar 

  33. A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, F. Sedighi, Preparation, characterization and investigation of sonophotocatalytic activity of thulium titanate/polyaniline nanocomposites in degradation of dyes. Ultrason. Sonochem. 50, 46–58 (2019)

    CAS  Google Scholar 

  34. S.M. Peymani-Motlagh, N. Moeinian, M. Rostami, M. Fasihi-Ramandi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi et al., Effect of Gd3+-, Pr3+-or Sm3+-substituted cobalt–zinc ferrite on photodegradation of methyl orange and cytotoxicity tests. J. Rare Earths 37(12), 1288–1295 (2019)

    Google Scholar 

  35. F. Gandomi, S.M. Peymani-Motlagh, M. Rostami, A. Sobhani-Nasab, M. Fasihi-Ramandi, M. Eghbali-Arani et al., Simple synthesis and characterization of Li0.5Fe2.5O4, LiMg0.5Fe2O4 and LiNi0.5Fe2O4, and investigation of their photocatalytic and anticancer properties on hela cells line. J. Mater. Sci.: Mater. Electron. 30(22), 19691–19702 (2019)

    CAS  Google Scholar 

  36. H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Eco-friendly synthesis of PbTiO3 nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light. Sep. Purif. Technol. 211, 873–881 (2019)

    CAS  Google Scholar 

  37. Z.-Q. Song, S.-B. Wang, W. Yang, M. Li, H. Wang, H. Yan, Synthesis of manganese titanate MnTiO3 powders by a sol–gel–hydrothermal method. Mater. Sci. Eng. B 113(2), 121–124 (2004)

    Google Scholar 

  38. J.J. Stickler, S. Kern, A. Wold, G. Heller, Magnetic resonance and susceptibility of several ilmenite powders. Phys. Rev. 164(2), 765 (1967)

    CAS  Google Scholar 

  39. H. Watanabe, H. Yamauchi, H. Takei, Magnetic anisotropies in MTiO3 (M= Co, Ni). J. Magn. Magn. Mater. 15, 549–550 (1980)

    Google Scholar 

  40. H.-Y. He, J.-F. Huang, L.-Y. Cao, J.-P. Wu, Humidity sensitivity of MnTiO3 film prepared via chemical solution deposition process. Sensors and Actuators B: Chemical. 132(1), 5–8 (2008)

    CAS  Google Scholar 

  41. M. Kharkwal, S. Uma, R. Nagarajan, Use of a chelating agent for the synthesis of high surface area pyrophanite MnTiO3 powders. Mater. Lett. 64(6), 692–694 (2010)

    CAS  Google Scholar 

  42. N.L. Ross, J. Ko, C.T. Prewitt, A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys. Chem. Miner. 16(7), 621–629 (1989)

    CAS  Google Scholar 

  43. P.S. Anjana, M.T. Sebastian, Synthesis, characterization, and microwave dielectric properties of ATiO3 (A = Co, Mn, Ni) ceramics. J. Am. Ceram. Soc. 89(7), 2114–2117 (2006)

    CAS  Google Scholar 

  44. G.W. Zhou, Y.S. Kang, Synthesis and structural properties of manganese titanate MnTiO3 nanoparticle. Mater. Sci. Eng. C 24(1–2), 71–74 (2004)

    Google Scholar 

  45. Y.K. Sharma, M. Kharkwal, S. Uma, R. Nagarajan, Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe Co, Ni and Cd) by co-precipitation of mixed metal oxalates. Polyhedron 28(3), 579–585 (2009)

    CAS  Google Scholar 

  46. K.-N. Bae, S.I. Noh, H.-J. Ahn, T.-Y. Seong, Effect of MnTiO3 surface treatment on the performance of dye-sensitized solar cells. Mater. Lett. 96, 67–70 (2013)

    CAS  Google Scholar 

  47. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455 (2005)

    CAS  Google Scholar 

  48. A. Hagfeldt, M. Graetzel, Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49–68 (1995)

    CAS  Google Scholar 

  49. J.-H. Yum, S. Nakade, D.-Y. Kim, S. Yanagida, Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides. J. Phys. Chem. B 110(7), 3215–3219 (2006)

    CAS  Google Scholar 

  50. D. Menzies, Q. Dai, Y.-B. Cheng, G. Simon, L. Spiccia, Improvement of the Zirconia shell in nanostructured titania core–shell working electrodes for dye-sensitized solar cells. Mater. Lett. 59(14–15), 1893–1896 (2005)

    CAS  Google Scholar 

  51. E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125(2), 475–482 (2003)

    CAS  Google Scholar 

  52. Y. Xu, M.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 85(3–4), 543–556 (2000)

    CAS  Google Scholar 

  53. D.B. Menzies, Q. Dai, L. Bourgeois, R.A. Caruso, Y.-B. Cheng, G.P. Simon et al., Modification of mesoporous TiO2 electrodes by surface treatment with titanium (IV), indium (III) and zirconium (IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells. Nanotechnology. 18(12), 125608 (2007)

    Google Scholar 

  54. H.S. Jung, J.-K. Lee, M. Nastasi, S.-W. Lee, J.-Y. Kim, J.-S. Park et al., Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir 21(23), 10332–10335 (2005)

    CAS  Google Scholar 

  55. T. Robinson, B. Chandran, P. Nigam, Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 36(11), 2824–2830 (2002)

    CAS  Google Scholar 

  56. H. He, W. Dong, G. Zhang, Photodegradation of aqueous methyl orange on MnTiO3 powder at different initial pH. Res. Chem. Intermed. 36(9), 995–1001 (2010)

    CAS  Google Scholar 

  57. T. Acharya, R. Choudhary, Dielectric behavior of manganese titanate in the paraelectric phase. Appl. Phys. A 121(2), 707–714 (2015)

    CAS  Google Scholar 

  58. Y. Absalan, I.G. Bratchikova, N.N. Lobanov, O.V. Kovalchukova, Novel synthesis method for photo-catalytic system based on some 3d-metal titanates. J. Mater. Sci.: Mater. Electron. 28(23), 18207–18219 (2017)

    CAS  Google Scholar 

  59. U. Mohanty, S. Kaushik, H. Bhatt, M. Deo, I. Naik, editors, Neutron diffraction and magnetic behavior of ilmenite MnTiO3, in AIP Conference Proceedings, AIP Publishing LLC, 2019

  60. X. Li, H. Zhang, J. Luo, Z. Feng, J. Huang, Hydrothermal synthesized novel nanoporous g-C3N4/MnTiO3 heterojunction with direct Z-scheme mechanism. Electrochim. Acta 258, 998–1007 (2017)

    CAS  Google Scholar 

  61. R. Nakhowong, Fabrication and characterization of MnTiO3 nanofibers by sol–gel assisted electrospinning. Mater. Lett. 161, 468–470 (2015)

    CAS  Google Scholar 

  62. W. Dong, D. Wang, L. Jiang, H. Zhu, H. Huang, J. Li et al., Synthesis of F doping MnTiO3 nanodiscs and their photocatalytic property under visible light. Mater. Lett. 98, 265–268 (2013)

    CAS  Google Scholar 

  63. R. Harrison, S. Redfern, Short-and long-range ordering in the ilmenite–hematite solid solution. Phys. Chem. Miner. 28(6), 399–412 (2001)

    CAS  Google Scholar 

  64. X. Tang, K.-A. Hu, The formation of ilmenite FeTiO3 powders by a novel liquid mix and H2/H2O reduction process. J. Mater. Sci. 41(23), 8025–8028 (2006)

    CAS  Google Scholar 

  65. T. Fujii, M. Kayano, Y. Takada, M. Nakanishi, J. Takada, Ilmenite–hematite solid solution films for novel electronic devices. Solid State Ion. 172(1–4), 289–292 (2004)

    CAS  Google Scholar 

  66. Z. Dai, P. Zhu, S. Yamamoto, A. Miyashita, K. Narum, H. Naramoto, Pulsed laser deposition of ilmenite FeTiO3 epitaxial thin film onto sapphire substrate. Thin Solid Films 339(1–2), 114–116 (1999)

    CAS  Google Scholar 

  67. T. Dietl, H. Ohno, Ferromagnetic III–V and II–VI semiconductors. MRS Bull. 28(10), 714–719 (2003)

    CAS  Google Scholar 

  68. X.-F. Guan, J. Zheng, M.-L. Zhao, L.-P. Li, G.-S. Li, Synthesis of FeTiO3 nanosheets with 0001 facets exposed: enhanced electrochemical performance and catalytic activity. RSC Adv. 3(33), 13635–13641 (2013)

    CAS  Google Scholar 

  69. J. Ru, Y. Hua, C. Xu, J. Li, Y. Li, D. Wang et al., Microwave-assisted preparation of submicron-sized FeTiO3 powders. Ceram. Int. 40(5), 6799–6805 (2014)

    CAS  Google Scholar 

  70. Y.J. Kim, B. Gao, S.Y. Han, M.H. Jung, A.K. Chakraborty, T. Ko et al., Heterojunction of FeTiO3 nanodisc and TiO2 nanoparticle for a novel visible light photocatalyst. J. Phys. Chem. C. 113(44), 19179–19184 (2009)

    CAS  Google Scholar 

  71. A.B. Gambhire, M.K. Lande, S.B. Rathod, B.R. Arbad, K.N. Vidhate, R.S. Gholap et al., Synthesis and characterization of FeTiO3 ceramics. Arab. J. Chem. 9, S429–S432 (2016)

    CAS  Google Scholar 

  72. P. Srinivas, A.S. Kumar, P. Babu, A.K. Bhatnagar, Synthesis and magnetic properties of Nanocrystalline FeTiO3 materials. J. Supercond. Novel Magn. 31(4), 1189–1197 (2018)

    CAS  Google Scholar 

  73. D. Nakatsuka, T. Fujii, M. Nakanishi, J. Takada, editors, Synthesis of Ge substituted ilmenite and their magnetic and electronic properties, in Journal of Physics: Conference Series, IOP Publishing, 2010

  74. P. Siva, P. Prabu, M. Selvam, S. Karthik, V. Rajendran, Electrocatalytic conversion of carbon dioxide to urea on nano-FeTiO3 surface. Ionics 23(7), 1871–1878 (2017)

    CAS  Google Scholar 

  75. A. Raghavender, N.H. Hong, K.J. Lee, M.-H. Jung, Z. Skoko, M. Vasilevskiy et al., Nano-ilmenite FeTiO3: synthesis and characterization. J. Magn. Magn. Mater. 331, 129–132 (2013)

    CAS  Google Scholar 

  76. D. Gu, Y. Qin, Y. Wen, L. Qin, H.J. Seo, Photochemical and magnetic activities of FeTiO3 nanoparticles by electro-spinning synthesis. J. Taiwan Inst. Chem. Eng. 78, 431–437 (2017)

    CAS  Google Scholar 

  77. A. Pataquiva-Mateus, H. Zea, J. Ramirez, Degradation of Orange II by Fenton reaction using ilmenite as catalyst. Environ. Sci. Pollut. Res. 24(7), 6187–6194 (2017)

    CAS  Google Scholar 

  78. Q.D. Truong, J.-Y. Liu, C.-C. Chung, Y.-C. Ling, Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun. 19, 85–89 (2012)

    CAS  Google Scholar 

  79. F. Zhang, Y. Chen, Q. Tian, Preparation of an improved performance FeTiO3-based lithium-ion battery anode. Synth. Met. 260, 116302 (2020)

    CAS  Google Scholar 

  80. T. Aparna, R. Sivasubramanian, FeTiO3 nanohexagons based electrochemical sensor for the detection of dopamine in presence of uric acid. Mater. Chem. Phys. 233, 319–328 (2019)

    CAS  Google Scholar 

  81. M. Abdou, M. Ayad, A. Diab, I. Hassan, A. Fadl, Studying the corrosion mitigation behavior and chemical durability of FeTiO3/melamine formaldehyde epoxy composite coating for steel internal lining applications. Prog. Org. Coat. 133, 325–339 (2019)

    CAS  Google Scholar 

  82. M. Abdou, A. Fadl, Assessment of nano-FeTiO3/non crystalline silica cold galvanizing composite coating as a duplex corrosion guard system for steel electricity transmission towers in severe aggressive media. Constr. Build. Mater. 223, 705–723 (2019)

    CAS  Google Scholar 

  83. S. Zhang, Y. Ruan, C. Liu, P. Wang, Y. Ma, The evolution of structure, chemical state and photocatalytic performance of α-Fe/FeTiO3/TiO2 with the nitridation at different temperatures. Mater. Res. Bull. 95, 503–508 (2017)

    CAS  Google Scholar 

  84. K. Vamsi, M. Krishnakumar, R. Saravanan, Effect of preheating temperatures on distribution of FeTiO3 on A 360 aluminium alloy by stirring, in Materials Today: Proceedings, 2019

  85. J. Jiang, J. Luo, J. Zhu, X. Huang, J. Liu, T. Yu, Diffusion-controlled evolution of core–shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries. Nanoscale. 5(17), 8105–8113 (2013)

    CAS  Google Scholar 

  86. M. Enhessari, A. Parviz, K. Ozaee, E. Karamali, Magnetic properties and heat capacity of CoTiO3 nanopowders prepared by stearic acid gel method. J. Exp. Nanosci. 5(1), 61–68 (2010)

    CAS  Google Scholar 

  87. G. Yang, W. Yan, J. Wang, H. Yang, Fabrication and characterization of CoTiO3 nanofibers by sol–gel assisted electrospinning. Mater. Lett. 122, 117–120 (2014)

    CAS  Google Scholar 

  88. Y. Qu, W. Zhou, H. Fu, Porous cobalt titanate nanorod: a new candidate for visible light-driven photocatalytic water oxidation. ChemCatChem. 6(1), 265–270 (2014)

    CAS  Google Scholar 

  89. A. Agafonov, A. Vinogradov, Catalytically active materials based on titanium dioxide: ways of enhancement of photocatalytic activity. High Energy Chem. 42(7), 578–580 (2008)

    CAS  Google Scholar 

  90. M. Siemons, U. Simon, Gas sensing properties of volume-doped CoTiO3 synthesized via polyol method. Sensors and Actuators B: Chemical. 126(2), 595–603 (2007)

    CAS  Google Scholar 

  91. M.A. Ehsan, R. Naeem, V. McKee, A. Rehman, A.S. Hakeem, M. Mazhar, Fabrication of photoactive CaTiO3–TiO2 composite thin film electrodes via facile single step aerosol assisted chemical vapor deposition route. J. Mater. Sci.: Mater. Electron. 30(2), 1411–1424 (2019)

    CAS  Google Scholar 

  92. G.W. Zhou, D.-G. Lee, Y.-H. Kim, C.-W. Kim, Y.-S. Kang, Preparation and spectroscopic characterization of ilmenite-type $ CoTiO3 $ nanoparticles. Bull. Korean Chem. Soc. 27(3), 368–372 (2006)

    CAS  Google Scholar 

  93. P. Kapoor, S. Uma, S. Rodriguez, K. Klabunde, Aerogel processing of MTi2O5 (M = Mg, Mn, Fe Co, Zn, Sn) compositions using single source precursors: synthesis, characterization and photocatalytic behavior. J. Mol. Catal. A: Chem. 229(1–2), 145–150 (2005)

    CAS  Google Scholar 

  94. Y.-J. Lin, Y.-H. Chang, W.-D. Yang, B.-S. Tsai, Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. J. Non-Cryst. Solids 352(8), 789–794 (2006)

    CAS  Google Scholar 

  95. S. Yin, D. Chen, W. Tang, Y. Peng, Synthesis of CaTiO3: Pr persistent phosphors by a modified solid-state reaction. Mater. Sci. Eng., B 136(2–3), 193–196 (2007)

    CAS  Google Scholar 

  96. K.S. Suslick, The chemical effects of ultrasound. Sci. Am. 260(2), 80–86 (1989)

    CAS  Google Scholar 

  97. F.M. Nowak, Sonochemistry: Theory, Reactions, Syntheses, and Applications (Nova Science Publishers, Hauppauge, 2010)

    Google Scholar 

  98. G. Cravotto, P. Cintas, Power ultrasound in organic synthesis: moving cavitational chemistry from academia to innovative and large-scale applications. Chem. Soc. Rev. 35(2), 180–196 (2006)

    CAS  Google Scholar 

  99. A. Moghtada, A. Shahrouzianfar, R. Ashiri, Low-temperature ultrasound synthesis of nanocrystals CoTiO3 without a calcination step: effect of ultrasonic waves on formation of the crystal growth mechanism. Adv. Powder Technol. 28(4), 1109–1117 (2017)

    CAS  Google Scholar 

  100. A. Agui, M. Mizumaki, Intermetallic charge transfer and band gap of MTiO3 (M = Mn, Fe Co, and Ni) studied by O 1s-edge X-ray emission spectroscopy. J. Electron Spectrosc. Relat. Phenom. 184(8–10), 463–467 (2011)

    CAS  Google Scholar 

  101. A. Abedini, S. Khademolhoseini, Cobalt titanate nanoparticles: synthesis, characterization, optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 27(1), 330–334 (2016)

    CAS  Google Scholar 

  102. A.H. Kianfar, P. Dehghani, M.M. Momeni, Photo-catalytic degradation of methylene blue over nano titanium/nickel oxide prepared from supported Schiff base complex on titanium dioxide. J. Mater. Sci.: Mater. Electron. 27(4), 3368–3375 (2016)

    CAS  Google Scholar 

  103. M.H. Habibi, M. Fakhrpor, Improved photo-catalytic activity of novel nano-dimension Ce/Zn composite oxides deposited on flat-glass surface for removal of Acid Black 4BN dye pollution. J. Mater. Sci.: Mater. Electron. 28(3), 2697–2704 (2017)

    CAS  Google Scholar 

  104. Y. Ghayeb, M.M. Momeni, Iron decorated tungsten-titania nanotubes as highly efficient photocatalysts for removal of Rhodamine B dye. J. Mater. Sci.: Mater. Electron. 27(6), 6305–6312 (2016)

    CAS  Google Scholar 

  105. R. Singh, S.G. Kulkarni, Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application. Polym. Bull. 71(2), 497–513 (2014)

    CAS  Google Scholar 

  106. M.H. Habibi, E. Shojaee, Complete photocatalytic mineralization of Nile blue on hetero-structured CoTiO3 nano-composite coated on glass in a sol–gel process using diethylene glycol as stabilizer: effect of charge separation and calcination temperature on activity. J. Mater. Sci.: Mater. Electron. 28(8), 5971–5978 (2017)

    CAS  Google Scholar 

  107. M. Siemons, U. Simon, Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sens. Actuators B: Chem. 120(1), 110–118 (2006)

    CAS  Google Scholar 

  108. J. Lu, Y. Jiang, Y. Zhang, J. Huang, Z. Xu, Preparation of gas sensing CoTiO3 nanocrystallites using EDTA as the chelating agent in a sol–gel process. Ceram. Int. 41(3), 3714–3721 (2015)

    CAS  Google Scholar 

  109. M.K. Yadav, A.V. Kothari, V.K. Gupta, Preparation and characterization of bi-and trimetallic titanium based oxides. Dyes Pigm. 89(2), 149–154 (2011)

    CAS  Google Scholar 

  110. S. Sakka, H. Kozuka, Handbook of Sol-Gel Science and Technology. 1. Sol-Gel Processing (Springer, Berlin, 2005)

    Google Scholar 

  111. S. Rasalingam, R.T. Koodali, Visible-light driven oxygen evolution over CoTiO3 perovskites via a modified Pechini method: impact of humidity on their phase composition. CrystEngComm 18(6), 868–871 (2016)

    CAS  Google Scholar 

  112. M.H. Habibi, E. Shojaee, Ilmenite type nano-crystalline Co–Ti–O ternary oxides: sol–gel thin film on borosilicate glass, characterization and photocatalytic activity in mineralization of reactive red 198. J. Mater. Sci.: Mater. Electron. 28(11), 8286–8293 (2017)

    CAS  Google Scholar 

  113. K. Wangkawong, S. Phanichphant, D. Tantraviwat, B. Inceesungvorn, CoTiO3/Ag3VO4 composite: a study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 454, 210–215 (2015)

    CAS  Google Scholar 

  114. T. Acharya, R. Choudhary, Structural, dielectric and impedance characteristics of CoTiO3. Mater. Chem. Phys. 177, 131–139 (2016)

    CAS  Google Scholar 

  115. W. Mao, K. Bao, F. Cao, B. Chen, G. Liu, W. Wang et al., Synthesis of a CoTiO3/BiOBr heterojunction composite with enhanced photocatalytic performance. Ceram. Int. 43(3), 3363–3368 (2017)

    CAS  Google Scholar 

  116. J. Lu, L. Cheng, Y. Zhang, J. Huang, C. Li, Effect of the seed layer on surface morphology and humidity sensing property of CoTiO3 nanocrystalline film. Ceram. Int. 43(7), 5823–5827 (2017)

    CAS  Google Scholar 

  117. S. Hashemian, A. Foroghimoqhadam, Effect of copper doping on CoTiO3 ilmenite type nanoparticles for removal of congo red from aqueous solution. Chem. Eng. J. 235, 299–306 (2014)

    CAS  Google Scholar 

  118. M.H. Habibi, E. Shojaee, Synthesis of a heterojunction CoTiO3/Co3O4 nano-composite thin film with superior photocatalytic activity and reusability: Effect of calcination temperature on phase transformation and effect of oxidants on enhanced degradation of Indo Light Blue dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229, 117796 (2020)

    CAS  Google Scholar 

  119. M. Singh, F. Qin, O.I.P. Ordoñez, W. Yang, J. Bao, A. Genc et al., Unusual catalytic activity of TiO2–CoTiO3 under 1064 nm pulsed laser illumination. Catal Today (2019). https://doi.org/10.1016/j.cattod.2019.06.081

    Article  Google Scholar 

  120. H. Li, Q. Gao, G. Wang, B. Han, K. Xia, C. Zhou, Architecturing CoTiO3 overlayer on nanosheets-assembled hierarchical TiO2 nanospheres as a highly active and robust catalyst for peroxymonosulfate activation and metronidazole degradation. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.123819

    Article  Google Scholar 

  121. J.M. Luque-Centeno, M. Martínez-Huerta, D. Sebastián, J.I. Pardo, M. Lázaro, CoTiO3/NrGO nanocomposites for oxygen evolution and oxygen reduction reactions: synthesis and electrocatalytic performance. Electrochim. Acta 331, 135396 (2020)

    CAS  Google Scholar 

  122. J. Lu, N. Jia, L. Cheng, K. Liang, J. Huang, J. Li, rGO/CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature. J. Alloy. Compd. 739, 227–234 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Rahimi-Nasrabadi or Ali Sobhani-Nasab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaemifar, S., Rahimi-Nasrabadi, M., Pourmasud, S. et al. Preparation and characterization of MnTiO3, FeTiO3, and CoTiO3 nanoparticles and investigation various applications: a review. J Mater Sci: Mater Electron 31, 6511–6524 (2020). https://doi.org/10.1007/s10854-020-03241-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03241-w

Navigation