Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases

Abstract

Innate lymphoid cells (ILCs), as an important component of the innate immune system, arise from a common lymphoid progenitor and are located in mucosal barriers and various tissues, including the intestine, skin, lung, and adipose tissue. ILCs are heterogeneous subsets of lymphocytes that have emerging roles in orchestrating immune response and contribute to maintain metabolic homeostasis and regulate tissue inflammation. Currently, more details about the pathways for the development and differentiation of ILCs have largely been elucidated, and cytokine secretion and downstream immune cell responses in disease pathogenesis have been reported. Recent research has identified that several distinct subsets of ILCs at skin barriers are involved in the complex regulatory network in local immunity, potentiating adaptive immunity and the inflammatory response. Of note, additional studies that assess the effects of ILCs are required to better define how ILCs regulate their development and functions and how they interact with other immune cells in autoimmune-related and inflammatory skin disorders. In this review, we will distill recent research progress in ILC biology, abnormal functions and potential pathogenic mechanisms in autoimmune-related skin diseases, including systemic lupus erythematosus (SLE), scleroderma and inflammatory diseases, as well as psoriasis and atopic dermatitis (AD), thereby giving a comprehensive review of the diversity and plasticity of ILCs and their unique functions in disease conditions with the aim to provide new insights into molecular diagnosis and suggest potential value in immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Minton, K. Innate lymphoid cells: ILC diversity maintained by microbiota. Nat. Rev. Immunol. 16, 593 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Tait, W. E. & Artis, D. Innate lymphoid cells: Balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445–457 (2012).

    Article  CAS  Google Scholar 

  4. Tugues, S. et al. Innate lymphoid cells as regulators of the tumor microenvironment. Semin. Immunol. 41, 101270 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Spits, H. & Cupedo, T. Innate lymphoid cells: Emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Powell, N. et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity 37, 674–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weizman, O. E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Monticelli, L. A. et al. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc. Natl Acad. Sci. USA 112, 10762–10767 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yasuda, K. et al. Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc. Natl Acad. Sci. USA 109, 3451–3456 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wong, S. H. et al. Transcription factor RORalpha is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Teunissen, M. et al. Composition of innate lymphoid cell subsets in the human skin: Enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 134, 2351–2360 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Montaldo, E. et al. Human RORgammat(+)CD34(+) cells are lineage-specified progenitors of group 3 RORgammat(+) innate lymphoid cells. Immunity 41, 988–1000 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Tlaskalova-Hogenova, H. et al. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol. Lett. 93, 97–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Hou, M. & Liu, S. Innate lymphoid cells are increased in systemic lupus erythematosus. Clin. Exp. Rheumatol. 37, 676–679 (2019).

    PubMed  Google Scholar 

  23. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol. 14, 564–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spits, H. et al. Innate lymphoid cells-a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Kiessling, R. et al. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  27. Mebius, R. E. et al. Developing lymph nodes collect CD4+ CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klose, C. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Carotta, S. et al. Identification of the earliest NK-cell precursor in the mouse BM. J. Exp. Med. 203, 1105–1116 (2011).

    Google Scholar 

  31. Constantinides, M. G. et al. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rawlins, E. L. et al. The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development 136, 3741–3745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boos, M. D. et al. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Luci, C. et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hudspeth, K. et al. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J. Autoimmun. 66, 40–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Male, V. et al. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur. J. Immunol. 41, 3017–3027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marquardt, N. et al. Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69(-)CD56(dim) cells. J. Allergy Clin. Immunol. 139, 1321–1330 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Beziat, V. et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121, 2678–2688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, F. et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 144, 392–401 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Schlums, H. et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 42, 443–456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krneta, T. et al. The breast tumor microenvironment alters the phenotype and function of natural killer cells. Cell. Mol. Immunol. 13, 628–639 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, X. et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 20, 1656–1667 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Davies, A. J. et al. Natural killer cells degenerate intact sensory afferents following nerve injury. Cell 176, 716–728 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aguilar, O. A. et al. A viral immunoevasin controls innate immunity by targeting the prototypical natural killer cell receptor family. Cell 169, 58–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Anft, M. et al. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-019-0277-2 (2019).

  50. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14, 221–229 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, X. et al. Single line or parallel lines: NK cell differentiation driven by T-bet and Eomes. Cell. Mol. Immunol. 9, 193–194 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Constantinides, M. G. et al. PLZF expression maps the early stages of ILC1 lineage development. Proc. Natl Acad. Sci. USA 112, 5123–5128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, X. et al. Memory formation and long-term maintenance of IL-7Ralpha(+) ILC1s via a lymph node-liver axis. Nat. Commun. 9, 4854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Fallon, P. G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity (2010).

  57. Guo, L. et al. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol. 33, 598–606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doherty, T. A. et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132, 205–213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohne, Y. et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat. Immunol. 17, 646–655 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Noval, R. M. et al. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function. J. Allergy Clin. Immunol. 138, 801–811 (2016).

    Article  CAS  Google Scholar 

  61. Bal, S. M. et al. IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 17, 636–645 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Tan, Z. et al. Interleukin-33 drives hepatic fibrosis through activation of hepatic stellate cells. Cell. Mol. Immunol. 15, 388–398 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. von Moltke, J. et al. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Article  CAS  Google Scholar 

  64. Schneider, C. et al. A Metabolite-Triggered tuft Cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moriyama, S. et al. Beta2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056–1061 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Kurebayashi, S. et al. Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl Acad. Sci. USA 97, 10132–10137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC + CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Wang, Q. et al. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci. Immunol. 4, eaay7501, https://doi.org/10.1126/sciimmunol.aay7501 (2019).

  73. Bernink, J. H. et al. C-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat. Immunol. 20, 992–1003 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Stockinger, B. et al. External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin. Immunol. 23, 99–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Li, S. et al. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity 49, 915–928 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carrega, P. et al. NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat. Commun. 6, 8280 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abou-Samra, E. et al. NKR-P1B expression in gut-associated innate lymphoid cells is required for the control of gastrointestinal tract infections. Cell. Mol. Immunol. 16, 868–877 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Godinho-Silva, C. et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574, 254–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dalli, J. et al. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity 46, 92–105 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science 348, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Orlik, C. et al. Keratinocytes costimulate naive human T cells via CD2: A potential target to prevent the development of proinflammatory Th1 cells in the skin. Cell. Mol. Immunol. https://doi.org/10.1038/s41423-019-0261-x (2019).

  85. Nestle, F. O. et al. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kabashima, K. et al. The immunological anatomy of the skin. Nat. Rev. Immunol. 19, 19–30 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Grice, E. A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gallo, R. L. Human skin is the largest epithelial surface for interaction with microbes. J. Invest. Dermatol. 137, 1213–1214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kobayashi, T. et al. Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell 176, 982–997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schwartz, C. et al. Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by IL-1beta. Allergy 74, 1920–1933 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Koues, O. I. et al. Distinct gene regulatory pathways for human innate versus adaptive lymphoid cells. Cell 165, 1134–1146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tsoi, L. C. et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44, 1341–1348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ebihara, T. et al. Runx3?specifies lineage commitment of innate lymphoid cells. Nat. Immunol. 16, 1124–1133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Murthy, A. et al. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 36, 105–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Demehri, S. et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol. 6, e123 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siracusa, M. C. et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cherrier, M. et al. Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209, 729–740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, K. et al. Cutting edge: Notch signaling promotes the plasticity of group-2 innate lymphoid cells. J. Immunol. 198, 1798–1803 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. D’Cruz, D. P. et al. Systemic lupus erythematosus. Lancet 369, 587–596 (2007).

    Article  PubMed  Google Scholar 

  100. Dorner, T. & Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 393, 2344–2358 (2019).

    Article  PubMed  Google Scholar 

  101. Chiche, L. et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 66, 1583–1595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, M. et al. Type I interferons promote the survival and proinflammatory properties of transitional B cells in systemic lupus erythematosus patients. Cell. Mol. Immunol. 16, 367–379 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Chang, N. H. et al. Interferon-alpha induces altered transitional B cell signaling and function in Systemic Lupus Erythematosus. J. Autoimmun. 58, 100–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Duster, M. et al. T cell-derived IFN-gamma downregulates protective group 2 innate lymphoid cells in murine lupus erythematosus. Eur. J. Immunol. 48, 1364–1375 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Guo, C. et al. Innate lymphoid cell disturbance with increase in ILC1 in systemic lupus erythematosus. Clin. Immunol. 202, 49–58 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Blokland, S. et al. Increased expression of Fas on group 2 and 3 innate lymphoid cells is associated with an interferon signature in systemic lupus erythematosus and Sjogren’s syndrome. Rheumatol. (Oxf.) 58, 1740–1745 (2019).

    Article  Google Scholar 

  107. Schepis, D. et al. Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus. Immunology 126, 140–146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lowes, M. A. et al. Immunology of psoriasis. Annu. Rev. Immunol. 32, 227–255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nair, R. P. et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 78, 827–851 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tervaert, W. C. & Esseveld, H. A study of the incidence of haemolytic streptococci in the throat in patients with psoriasis vulgaris, with reference to their role in the pathogenesis of this disease. Dermatologica 140, 282–290 (1970).

    Article  CAS  PubMed  Google Scholar 

  113. Thorarensen, S. M. et al. Physical trauma recorded in primary care is associated with the onset of psoriatic arthritis among patients with psoriasis. Ann. Rheum. Dis. 76, 521–525 (2017).

    Article  PubMed  Google Scholar 

  114. Brauchli, Y. B. et al. Association between beta-blockers, other antihypertensive drugs and psoriasis: Population-based case-control study. Br. J. Dermatol. 158, 1299–1307 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Becher, B. & Pantelyushin, S. Hiding under the skin: interleukin-17-producing gammadelta T cells go under the skin? Nat. Med 18, 1748–1750 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Pantelyushin, S. et al. Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ivanov, I. I. et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol. 134, 984–991 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Bruggen, M. C. et al. In situ mapping of innate lymphoid cells in human skin: Evidence for remarkable differences between normal and inflamed skin. J. Invest. Dermatol. 136, 2396–2405 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Dyring-Andersen, B. et al. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br. J. Dermatol. 170, 609–616 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Paternoster, L. et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat. Genet. 47, 1449–1456 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palmer, C. N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Rodriguez, E. et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease. J. Allergy Clin. Immunol. 123, 1361–1370 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Kim, B. S. et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci. Transl. Med. 5, 116r–170r (2013).

    Article  CAS  Google Scholar 

  127. Saunders, S. P. et al. Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J. Allergy Clin. Immunol. 137, 482–491 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, L. Y. et al. Protein palmitoylation by ZDHHC13 protects skin against microbial-driven dermatitis. J. Invest. Dermatol. 137, 894–904 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Li, Y. et al. Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: a potential role for the chemokine CXCL16. Cell. Mol. Immunol. 16, 75–86 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Barlow, J. L. et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J. Allergy Clin. Immunol. 132, 933–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Salimi, M. et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J. Exp. Med. 210, 2939–2950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim, B. S. et al. Basophils promote innate lymphoid cell responses in inflamed skin. J. Immunol. 193, 3717–3725 (2014).

    Article  CAS  PubMed  Google Scholar 

  134. Mashiko, S. et al. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J. Dermatol. Sci. 88, 167–174 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Jiao, D. et al. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation. Cell. Mol. Immunol. 13, 535–550 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Irani, A. M. et al. Immunohistochemical detection of human basophils in late-phase skin reactions. J. Allergy Clin. Immunol. 101, 354–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet. 390, 1685–1699 (2017).

    Article  PubMed  Google Scholar 

  138. Foocharoen, C. et al. Clinical characteristics of scleroderma overlap syndromes: Comparisons with pure scleroderma. Int. J. Rheum. Dis. 19, 913–923 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Rezaei, R. et al. Genetic implications in the pathogenesis of systemic sclerosis. Int. J. Rheum. Dis. 21, 1478–1486 (2018).

    Article  PubMed  Google Scholar 

  140. De Martinis, M. et al. An overview of environmental risk factors in systemic sclerosis. Expert Rev. Clin. Immunol. 12, 465–478 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Airo’, P. et al. Malignancies in Italian patients with systemic sclerosis positive for anti-RNA polymerase III antibodies. J. Rheumatol. 38, 1329–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Joseph, C. G. et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343, 152–157 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Roan, F. et al. CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J. Immunol. 196, 2051–2062 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Aliprantis, A. O. et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc. Natl Acad. Sci. USA 104, 2827–2830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wohlfahrt, T. et al. Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann. Rheum. Dis. 75, 623–626 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Cohen, T. J. & Damoiseaux, J. Antineutrophil cytoplasmic autoantibodies: How are they detected and what is their use for diagnosis, classification and follow-up? Clin. Rev. Allergy Immunol. 43, 211–219 (2012).

    Article  CAS  Google Scholar 

  147. Lyons, P. A. et al. Genetically distinct subsets within ANCA-associated vasculitis. N. Engl. J. Med. 367, 214–223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sunderkotter, C. H. et al. Nomenclature of cutaneous vasculitis: dermatologic addendum to the 2012 revised international chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheumatol. 70, 171–184 (2018).

    Article  PubMed  Google Scholar 

  149. Braudeau, C. et al. Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J. Autoimmun. 70, 73–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Mowad, C. M. Patch testing: pitfalls and performance. Curr. Opin. Allergy Clin. Immunol. 6, 340–344 (2006).

    Article  PubMed  Google Scholar 

  151. Kaplan, D. H. et al. Early immune events in the induction of allergic contact dermatitis. Nat. Rev. Immunol. 12, 114–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rafei-Shamsabadi, D. A. et al. Lack of type 2 innate lymphoid cells promotes a type I-Driven enhanced immune response in contact hypersensitivity. J. Invest. Dermatol. 138, 1962–1972 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Keren, A. et al. Innate lymphoid cells 3 induce psoriasis in xenotransplanted healthy human skin. J. Allergy Clin. Immunol. 142, 305–308 (2018).

    Article  PubMed  Google Scholar 

  154. Van Belle, A. B. et al. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J. Immunol. 188, 462–469 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Imura, C. et al. A novel RORgammat inhibitor is a potential therapeutic agent for the topical treatment of psoriasis with low risk of thymic aberrations. J. Dermatol. Sci. 93, 176–185 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Rompoti, N. et al. Real world data from a single Greek center on the use of secukinumab in plaque psoriasis: effectiveness, safety, drug survival, and identification of patients that sustain optimal response. J. Eur. Acad. Dermatol. Venereol. (2020).

  157. Merola, J. F. et al. Ixekizumab improves secondary lesional signs, pain and sexual health in patients with moderate-to-severe genital psoriasis. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/jdv.16181 (2020).

  158. Bilal, J. et al. A systematic review and meta-analysis of the efficacy and safety of the interleukin (IL)-12/23 and IL-17 inhibitors ustekinumab, secukinumab, ixekizumab, brodalumab, guselkumab and tildrakizumab for the treatment of moderate to severe plaque psoriasis. J. Dermatolog. Treat. 29, 569–578 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Dai, J. et al. Topical ROR inverse agonists suppress inflammation in mouse models of atopic dermatitis and acute irritant dermatitis. J. Invest. Dermatol. 137, 2523–2531 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Imai, Y. et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc. Natl Acad. Sci. USA 110, 13921–13926 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Oldhoff, J. M. et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60, 693–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Pavord, I. D. et al. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet. 380, 651–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Mora-Velandia, L. M. et al. A human lin(-) CD123(+) CD127(low) population endowed with ILC features and migratory capabilities contributes to immunopathological hallmarks of psoriasis. Front Immunol. 8, 176 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81972943, No.81830097) and Hunan Talent Young Investigator (No. 2019RS2012).

Author information

Authors and Affiliations

Authors

Contributions

S.Q.Z. wrote the manuscript, Q.W.L. did the editing, H.J.W. and Q.J.L. revised the manuscript.

Corresponding authors

Correspondence to Haijing Wu or Qianjin Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Li, Q., Wu, H. et al. The pathogenic role of innate lymphoid cells in autoimmune-related and inflammatory skin diseases. Cell Mol Immunol 17, 335–346 (2020). https://doi.org/10.1038/s41423-020-0399-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-020-0399-6

Keywords

This article is cited by

Search

Quick links