Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NCOA5 deficiency promotes a unique liver protumorigenic microenvironment through p21WAF1/CIP1 overexpression, which is reversed by metformin

Abstract

Prevention and treatment options for hepatocellular carcinoma (HCC) are presently limited, underscoring the necessity for further elucidating molecular mechanisms underlying HCC development and identifying new prevention and therapeutic targets. Here, we demonstrate a unique protumorigenic niche in the livers of Ncoa5+/ mouse model of HCC, which is characterized by altered expression of a subset of genes including p21WAF1/CIP1 and proinflammatory cytokine genes, increased putative hepatic progenitors, and expansions of activated and tissue-resident memory (TRM) CD8+ T lymphocytes, myeloid-derived suppressor cells (MDSCs), and alternatively activated M2 macrophages. Importantly, prophylactic metformin treatment reversed these characteristics including aberrant p21WAF1/CIP1 expression and subsequently reduced HCC incidence in Ncoa5+/− male mice. Heterozygous deletion of the p21WAF1/CIP1 gene alleviated the key features associated with the protumorigenic niche in the livers of Ncoa5+/− male mice. Moreover, transcriptomic analysis reveals that preneoplastic livers of Ncoa5+/− mice are similar to the livers of nonalcoholic steatohepatitis patients as well as the adjacent noncancerous liver tissues of a subset of HCC patients with a relatively poor prognosis. Together, our results suggest that p21WAF1/CIP1 overexpression is essential in the development of protumorigenic microenvironment induced by NCOA5 deficiency and metformin prevents HCC development via alleviating p21WAF1/CIP1 overexpression and protumorigenic microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dysregulated genes expression and increased putative HPCs in preneoplastic livers of Ncoa5+/− male mouse.
Fig. 2: Frequency, absolute numbers, and subsets of CD8+ T cells in livers of Ncoa5+⁄− mice.
Fig. 3: Frequency and absolute numbers of MDSCs, macrophages and M2 macrophages in livers of Ncoa5+⁄− mice.
Fig. 4: Effects of metformin on the characteristics of precancerous livers and HCC incidence in Ncoa5+/− male mice.
Fig. 5: Effects of metformin on dysregulated genes, cytoplasmic p21WAF1/CIP1-positive hepatocytes and HPCs in Ncoa5+/− male mouse liver.
Fig. 6: Effect of heterozygous deletion of p21 gene on the livers of Ncoa5+/− male mice.
Fig. 7: Association of CDKN1A/p21WAF1/CIP1 expression and Ncoa5 gene set with HCC Patients and NASH patients.

Similar content being viewed by others

Data availability

The RNA sequencing data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series accession number GSE110524. All other data that support the findings of this study are available within the article and its supplementary information files or from the corresponding author upon reasonable request.

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol Biomark Prev. 2016;25:16–27.

    Article  Google Scholar 

  2. Gerbes A, Zoulim F, Tilg H, Dufour JF, Bruix J, Paradis V, et al. Gut roundtable meeting paper: selected recent advances in hepatocellular carcinoma. Gut. 2018;67:380–8.

    Article  CAS  PubMed  Google Scholar 

  3. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2:16018.

    Article  PubMed  Google Scholar 

  4. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153:812–26.

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa H, Maeda S. Inflammation- and stress-related signaling pathways in hepatocarcinogenesis. World J Gastroenterol. 2012;18:4071–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4.

    Article  CAS  PubMed  Google Scholar 

  7. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhar D, Seki E, Karin M. NCOA5, IL-6, type 2 diabetes, and HCC: The deadly quartet. Cell Metab. 2014;19:6–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao S, Li A, Liu F, Chen F, Williams M, Zhang C, et al. NCOA5 haploinsufficiency results in glucose intolerance and subsequent hepatocellular carcinoma. Cancer Cell. 2013;24:725–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhalla K, Hwang BJ, Dewi RE, Twaddel W, Goloubeva OG, Wong KK, et al. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res. 2012;5:544–52.

    Article  CAS  Google Scholar 

  11. DePeralta DK, Wei L, Ghoshal S, Schmidt B, Lauwers GY, Lanuti M, et al. Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer. 2016;122:1216–27.

    Article  CAS  PubMed  Google Scholar 

  12. Tajima K, Nakamura A, Shirakawa J, Togashi Y, Orime K, Sato K, et al. Metformin prevents liver tumorigenesis induced by high-fat diet in C57Bl/6 mice. Am J Physiol Endocrinol Metab. 2013;305:E987–998.

    Article  CAS  PubMed  Google Scholar 

  13. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75:817–25.

    Article  CAS  PubMed  Google Scholar 

  14. He GB, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang YH, et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell. 2013;155:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo X, Liao R, Hanley KL, Zhu HH, Malo KN, Hernandez C, et al. Dual Shp2 and Pten deficiencies promote non-alcoholic steatohepatitis and genesis of liver tumor-initiating cells. Cell Rep. 2016;17:2979–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu LX, Ling Y, Wang HY. Role of nonresolving inflammation in hepatocellular carcinoma development and progression. NPJ Precis Oncol. 2018;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, Kalia V, et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007;27:670–84.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017;169:1342–56 e1316.

    Article  CAS  PubMed  Google Scholar 

  20. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016;354:1160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SY, Lee SH, Yang EJ, Kim EK, Kim JK, Shin DY, et al. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS ONE. 2015;10:e0135858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tan XL, Bhattacharyya KK, Dutta SK, Bamlet WR, Rabe KG, Wang E, et al. Metformin suppresses pancreatic tumor growth with inhibition of NFkappaB/STAT3 inflammatory signaling. Pancreas. 2015;44:636–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, et al. A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Res. 2010;70:10202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology. 2015;61:1945–56.

    Article  CAS  PubMed  Google Scholar 

  26. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA. 2010;304:2706–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arendt BM, Comelli EM, Ma DW, Lou W, Teterina A, Kim T, et al. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology. 2015;61:1565–78.

    Article  CAS  PubMed  Google Scholar 

  28. Warfel NA, El-Deiry WS. p21WAF1 and tumourigenesis: 20 years after. Curr Opin Oncol. 2013;25:52–58.

    Article  CAS  PubMed  Google Scholar 

  29. Gartel AL, Tyner AL. Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res. 1999;246:280–9.

    Article  CAS  PubMed  Google Scholar 

  30. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9:400–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cmielova J, Rezacova M. p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem. 2011;112:3502–6.

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen P, Valanejad L, Cast A, Wright M, Garcia JM, El-Serag HB, et al. Elimination of age-associated hepatic steatosis and correction of aging phenotype by inhibition of cdk4-C/EBPalpha-p300 axis. Cell Rep. 2018;24:1597–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomita K, Teratani T, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, et al. p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice. J Hepatol. 2012;57:837–43.

    Article  CAS  PubMed  Google Scholar 

  34. Wu H, Wade M, Krall L, Grisham J, Xiong Y, Van Dyke T. Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev. 1996;10:245–60.

    Article  CAS  PubMed  Google Scholar 

  35. Yano M, Ohkoshi S, Aoki YH, Takahashi H, Kurita S, Yamazaki K, et al. Hepatitis B virus X induces cell proliferation in the hepatocarcinogenesis via up-regulation of cytoplasmic p21 expression. Liver Int. 2013;33:1218–29.

    Article  CAS  PubMed  Google Scholar 

  36. Marhenke S, Buitrago-Molina LE, Endig J, Orlik J, Schweitzer N, Klett S, et al. p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut. 2014;63:1501–12.

    Article  CAS  PubMed  Google Scholar 

  37. Ehedego H, Boekschoten MV, Hu W, Doler C, Haybaeck J, Gabetaler N, et al. p21 ablation in liver enhances DNA damage, cholestasis, and carcinogenesis. Cancer Res. 2015;75:1144–55.

    Article  CAS  PubMed  Google Scholar 

  38. Nicolae CM, O’Connor MJ, Constantin D, Moldovan GL. NFkappaB regulates p21 expression and controls DNA damage-induced leukemic differentiation. Oncogene. 2018;37:3647–56.

    Article  CAS  PubMed  Google Scholar 

  39. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674–85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Donadon V, Balbi M, Mas MD, Casarin P, Zanette G. Metformin and reduced risk of hepatocellular carcinoma in diabetic patients with chronic liver disease. Liver Int. 2010;30:750–8.

    Article  CAS  PubMed  Google Scholar 

  41. Schulte L, Scheiner B, Voigtlander T, Koch S, Schweitzer N, Marhenke S, et al. Treatment with metformin is associated with a prolonged survival in patients with hepatocellular carcinoma. Liver Int. 2019;39:714–26.

    Article  CAS  PubMed  Google Scholar 

  42. Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11:390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Algire C, Moiseeva O, Deschenes-Simard X, Amrein L, Petruccelli L, Birman E, et al. Metformin reduces endogenous reactive oxygen species and associated DNA damage. Cancer Prev Res. 2012;5:536–43.

    Article  CAS  Google Scholar 

  44. Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci USA. 2013;110:972–7.

    Article  CAS  PubMed  Google Scholar 

  45. Fujita K, Iwama H, Miyoshi H, Tani J, Oura K, Tadokoro T, et al. Diabetes mellitus and metformin in hepatocellular carcinoma. World J Gastroenterol. 2016;22:6100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Molnar Z, Millward AB, Tse W, Demaine AG. p21(WAF1/CIP1) expression is differentially regulated by metformin and rapamycin. Int J Chronic Dis. 2014;2014:327640.

    PubMed  PubMed Central  Google Scholar 

  47. Noren Hooten N, Martin-Montalvo A, Dluzen DF, Zhang Y, Bernier M, Zonderman AB, et al. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell. 2016;15:572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rohr-Udilova N, Klinglmuller F, Schulte-Hermann R, Stift J, Herac M, Salzmann M, et al. Deviations of the immune cell landscape between healthy liver and hepatocellular carcinoma. Sci Rep. 2018;8:6220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci USA. 2015;112:1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shalapour S, Lin XJ, Bastian IN, Brain J, Burt AD, Aksenov AA, et al. Erratum: Inflammation-induced IgA(+) cells dismantle anti-liver cancer immunity. Nature. 2017;551:340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Verdura S, Cuyas E, Martin-Castillo B, Menendez JA. Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy. Oncoimmunology. 2019;8:e1633235.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu X, Liu F, Gao S, Reske J, Li A, Wu C-L, et al. A single non-synonymous NCOA5 variation in type 2 diabetic patients with hepatocellular carcinoma impairs the function of NCOA5 in cell cycle regulation. Cancer Lett. 2017;391:152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants (R01 CA188305 and R21 CA185021) of National Cancer Institute to HX and a NIH-NCI K22 award (5K22CA18814802) to RD. MW was supported by a NIH F32 student training fellowship (5 T32 GM 92715-3). XL was partially supported by a fellowship from Integrated Hospital of Traditional Chinese Medicine, Southern Medical University. The authors thank J. Rennhack and E. Andrechek for sharing expertise in RNA-seq data analysis; E. Andrechek for manuscript comments; and members of the HX lab for helpful discussions. The results reported here are partially based on data generated by the TCGA Research Network: http://cancergenome.nih.gov, which we also gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, M., Liu, X., Zhang, Y. et al. NCOA5 deficiency promotes a unique liver protumorigenic microenvironment through p21WAF1/CIP1 overexpression, which is reversed by metformin. Oncogene 39, 3821–3836 (2020). https://doi.org/10.1038/s41388-020-1256-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1256-x

This article is cited by

Search

Quick links