Skip to main content
Log in

The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this article we analyze the following problem: given a mechanical system subject to (possibly redundant) bilateral and unilateral constraints with set-valued Coulomb’s friction, provide conditions such that the state, which consists of all contacts sticking in both tangential and normal directions, is solvable. The analysis uses complementarity problems, variational inequalities, and linear algebra, hence it provides criteria which are, in principle, numerically tractable. An algorithm and several illustrating examples are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This is sometimes called rolling friction, or friction without sliding. The expression for the velocities comes from the principle of virtual work.

  2. This kind of transition is often assumed to exist in biped robots control, for instance, when one foot detaches from the ground at the end of a step where both feet are in persistent all-sticking mode.

  3. See Appendices B and C for the definition of the indicator function, its subdifferential, and the normal cone to a set \(K\).

  4. Vector product is calculated adding 0 as the third component of vectors.

References

  1. Abadie, M.: Dynamic simulation of rigid bodies: modelling of frictional contacts. In: Brogliato, B. (ed.) Impacts in Mechanical Systems. Analysis and Modelling. Lecture Notes in Physics, vol. 551, pp. 61–144. Springer, Berlin (2000)

    MATH  Google Scholar 

  2. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Addi, K., Brogliato, B., Goeleven, D.: A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems. Applications in electronics. Math. Program., Ser. A 126(1), 31–67 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Adly, S., Nacry, F., Thibault, L.: Preservation of prox-regularity of sets and application to constrained optimization. SIAM J. Optim. 26(1), 448–473 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. 42(3), 249–282 (2018)

    MATH  Google Scholar 

  6. Anitescu, M., Cremer, J.F., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 24, 405–437 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Anitescu, M., Cremer, J.F., Potra, F.A.: On the existence of solutions to complementarity formulations of contact problems with friction. In: Ferris, M.C., Pang, J.S. (eds.) Complementarity and Variational Problems. State of the Art, pp. 12–21. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  8. Aubin, J.P.: Applied Functional Analysis. Wiley, New York (1979)

    MATH  Google Scholar 

  9. Audren, H., Kheddar, A.: 3-D robust stability polyhedron in multicontact. IEEE Trans. Robot. 34(2), 388–403 (2018)

    Google Scholar 

  10. Balkcom, D., Trinkle, J.: Computing wrench cones for planar rigid body contact tasks. Int. J. Robot. Res. 21(2), 1053–1066 (2002)

    Google Scholar 

  11. Baraff, D.: Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10(2–4), 292–352 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Bernstein, D.S.: Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  13. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)

    MATH  Google Scholar 

  14. Bicchi, A.: Hands for dexterous manipulation and robust grasping: a difficulty road toward simplicity. IEEE Trans. Robot. Autom. 16(6), 652–662 (2000)

    Google Scholar 

  15. Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multibody Syst. Dyn. 38, 43–76 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Bretl, T., Lall, S.: Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)

    Google Scholar 

  17. Brogliato, B.: Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems. Multibody Syst. Dyn. 29, 289–325 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Brogliato, B.: Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst. Dyn. 32, 175–216 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control, 3rd edn. Communications and Control Engineering. Springer International Publishing Switzerland, Cham (2016). Erratum/addendum at https://hal.inria.fr/hal-01331565v2

    MATH  Google Scholar 

  20. Brogliato, B., Goeleven, D.: Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody Syst. Dyn. 35, 39–61 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Brogliato, B., Thibault, L.: Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Caron, S., Pham, Q.C., Nakamura, Y.: ZMP support areas for multicontact mobility under frictional constraints. IEEE Trans. Robot. 33(1), 67–80 (2017)

    Google Scholar 

  23. Chen, X., Xiang, S.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18(4), 1250–1265 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Choudhury, D., Horn, R., Pierce, S.: Quasi-positive definite operators and matrices. Linear Algebra Appl. 99, 161–176 (1988)

    MathSciNet  MATH  Google Scholar 

  25. Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem. Computer Science and Scientific Computing. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  26. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Operations Research. Springer, New York (2003)

    MATH  Google Scholar 

  27. Fraczek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction. Mech. Mach. Theory 46, 312–334 (2011)

    MATH  Google Scholar 

  28. Gholami, F., Nasri, M., Kovecses, J., Teichmann, M.: A linear complementarity formulation for contact problems with regularized friction. Mech. Mach. Theory 105, 568–582 (2016)

    Google Scholar 

  29. Glocker, C.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Springer, Berlin (2001)

    MATH  Google Scholar 

  30. Glocker, C., Pfeiffer, F.: Dynamical systems with unilateral contacts. Nonlinear Dyn. 3(4), 245–259 (1992)

    Google Scholar 

  31. Glocker, C., Pfeiffer, F.: Complementarity problems in multibody systems with planar friction. Arch. Appl. Mech. 63(7), 452–463 (1993)

    MATH  Google Scholar 

  32. Goeleven, D.: Complementarity and Variational Inequalities in Electronics. Mathematical Analysis and Its Applications. Academic Press, San Diego (2017)

    MATH  Google Scholar 

  33. Han, L., Trinkle, J., Li, Z.X.: Grasp analysis as linear matrix inequality problems. IEEE Trans. Robot. Autom. 16(6), 663–674 (2000)

    Google Scholar 

  34. Higashimori, M., Kimura, M., Ishii, I., Kaneko, M.: Dynamic capturing strategy for a 2-D stick-shaped object based on friction independent collision. IEEE Trans. Robot. 23(3), 541–552 (2007)

    Google Scholar 

  35. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)

    MATH  Google Scholar 

  36. de Jalón, J.G., Gutteriez-Lopez, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst. Dyn. 30(3), 311–341 (2013)

    MathSciNet  MATH  Google Scholar 

  37. de Jalón, J.G., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)

    MATH  Google Scholar 

  38. Klepp, H.J.: Existence and uniqueness of solutions for accelerations for multibody systems with friction. Z. Angew. Math. Mech. 75(1), 679–689 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Google Scholar 

  40. Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A, Solids 22(2), 193–216 (2003)

    MathSciNet  MATH  Google Scholar 

  41. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    MATH  Google Scholar 

  42. Lötstedt, P.: Coulomb friction in two-dimensional rigid body systems. Z. Angew. Math. Mech. 61, 605–615 (1981)

    MathSciNet  Google Scholar 

  43. Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982)

    MathSciNet  Google Scholar 

  44. Ma, S., Wang, T.: Planar multiple-contact problems subject to unilateral and bilateral kinetic constraints with static Coulomb friction. Nonlinear Dyn. 94, 99–121 (2018)

    MATH  Google Scholar 

  45. Moreau, J.J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends in Applications of Pure Mathematics to Mechanics, vol. 2, pp. 263–280. Pitman, London (1979)

    Google Scholar 

  46. Negrut, D., Serban, R., Tasora, A.: Posing multibody dynamics with friction and contact as a differential complementarity problem. J. Comput. Nonlinear Dyn. 13, 014503 (2018)

    Google Scholar 

  47. Nikolic, M., Borovac, B., Rakovic, M.: Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts. Multibody Syst. Dyn. 42, 197–218 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Or, Y., Rimon, E.: Analytic characterization of a class of three-contact frictional equilibrium postures in three-dimensional gravitational environments. Int. J. Robot. Res. 29(1), 3–22 (2010)

    Google Scholar 

  49. Or, Y., Rimon, E.: Characterization of frictional multi-legged equilibrium postures on uneven terrains. Int. J. Robot. Res. 36(1), 105–128 (2017)

    Google Scholar 

  50. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser, Basel (1985)

    MATH  Google Scholar 

  51. Panagiotopoulos, P.D., Al-Fahed, A.M.: Robot hand grasping and related problems: optimal control and identification. Int. J. Robot. Res. 13(2), 127–136 (1994)

    Google Scholar 

  52. Pang, J., Trinkle, J.: Stability characterization of rigid body contact problems with Coulomb friction. Z. Angew. Math. Mech. 80(10), 643–663 (2000)

    MathSciNet  MATH  Google Scholar 

  53. Pang, J.S., Trinkle, J.C.: Complementarity formulation and existence of solutions of dynamic rigid-body contact problems with Coulomb friction. Math. Program. 73(2), 199–226 (1996)

    MathSciNet  MATH  Google Scholar 

  54. Pang, J.S., Trinkle, J.C., Lo, G.: A complementarity approach to a quasistatic multi-rigid-body contact problem. J. Comput. Optim. Appl. 5(2), 139–154 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Pekal, M., Fraczek, J.: Comparison of selected formulations for multibody systems dynamics with redundant constraints. Arch. Mech. Eng. LXII(1), 93–112 (2016)

    Google Scholar 

  56. Pfeiffer, F.: Non-smooth engineering dynamics. Meccanica 51(12), 3167–3184 (2016)

    MathSciNet  Google Scholar 

  57. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Nonlinear Science. Wiley, New York (1996)

    MATH  Google Scholar 

  58. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  59. Rohde, C.A.: Generalized inverses of partitioned matrices. J. Soc. Ind. Appl. Math. 13(4), 1033–1035 (1965)

    MathSciNet  MATH  Google Scholar 

  60. Seifried, R.: Dynamics of Underactuated Multibody Systems. Solid Mechanics and Its Applications. Springer International Publishing Switzerland, Cham (2014)

    MATH  Google Scholar 

  61. Seon, J.A., Dahmouche, R., Gauthier, M.: Enhance in-hand dexterous micromanipulation by exploiting adhesion forces. IEEE Trans. Robot. 34(1), 113–125 (2018)

    Google Scholar 

  62. Shi, J., Woodruff, J., Umbanhowar, P., Lynch, K.: Dynamic in-hand sliding manipulation. IEEE Trans. Robot. 33(4), 778–795 (2017)

    Google Scholar 

  63. Simeon, B.: Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach. Differential-Algebraic Equations Forum. Springer, Berlin (2013)

    MATH  Google Scholar 

  64. Studer, C., Glocker, C.: Representation of normal cone inclusion problems in dynamics via non-linear equations. Arch. Appl. Mech. 76(5), 327–348 (2006)

    MATH  Google Scholar 

  65. Tasora, A., Anitescu, M.: A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput. Methods Appl. Mech. Eng. 200(5–8), 439–453 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Tasora, A., Anitescu, M.: A complementarity-based rolling friction model for rigid contacts. Meccanica 48(7), 1643–1659 (2013)

    MathSciNet  MATH  Google Scholar 

  67. Tian, Y., Takane, Y.: Schur complements and Banachiewicz--Schur forms. Electron. J. Linear Algebra 13, 405–418 (2005)

    MathSciNet  MATH  Google Scholar 

  68. Trinkle, J.C.: On the stability and instantaneous velocity of grasped frictionless objects. IEEE Trans. Robot. Autom. 8(5), 560–572 (1992)

    Google Scholar 

  69. Trinkle, J.C., Pang, J.S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with Coulomb friction. J. Appl. Math. Mech./Z. Angew. Math. Mech. 77(4), 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  70. Trinkle, J.C., Tzitzouris, J.A., Pang, J.S.: Dynamic multi-rigid-body systems with concurrent distributed contacts: theory and examples. Philos. Trans., Math. Phys. Eng. Sci. 359(1789), 2575–2593 (2001)

    MathSciNet  MATH  Google Scholar 

  71. Vanderbei, R., Carpenter, T.: Symmetric indefinite systems for interior point methods. Math. Program. 58(1–3), 1–32 (1993)

    MathSciNet  MATH  Google Scholar 

  72. Varkonyi, P.L., Or, Y.: Lyapunov stability of a rigid body with two frictional contacts. Nonlinear Dyn. 88, 363–393 (2017)

    MathSciNet  MATH  Google Scholar 

  73. Wojtyra, M.: Joint reactions in rigid body mechanisms with dependent constraints. Mech. Mach. Theory 44, 2265–2278 (2009)

    MATH  Google Scholar 

  74. Wojtyra, M.: Modeling of static friction in closed-loop kinetic chains–uniqueness and parametric sensitivity. Multibody Syst. Dyn. 39, 337–361 (2017)

    MathSciNet  MATH  Google Scholar 

  75. Wojtyra, M.: The Moore–Penrose inverse approach to modeling of multibody systems with redundant constraints. In: Uhl, T. (ed.) Advances in Mechanisms and Machine Science, Mechanisms and Machine Science, vol. 73, pp. 3087–3096. Springer Nature Switzerland AG, Cham (2019)

    Google Scholar 

  76. Wojtyra, M., Fraczek, J.: Comparison of selected methods of handling redundant constraints in multibody systems simulations. J. Comput. Nonlinear Dyn. 8, 021,007 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Useful results from linear algebra

The first part of this lemma is taken from [59], the second part is [12, Fact 6.4.29], see also [67, Eq. (1.5)].

Lemma 3

LetM=(ACCB)be symmetric and positive semidefinite. Assume that\(Q=B-C^{\top }A^{\dagger }C\)is nonsingular. Then the Moore–Penrose generalized inverse of\(M\)is given by

$$ M^{\dagger }=\left ( \textstyle\begin{array}{c@{\quad }c} A^{\dagger }+A^{\dagger }CQ^{\dagger }C^{\top }A^{\dagger } & -A^{\dagger }CQ^{\dagger } \\ -Q^{\dagger }C^{\top }A^{\dagger } & Q^{\dagger } \end{array}\displaystyle \right ). $$
(66)

When\(B=0\)one obtains with\(E=A+CC^{\top }\)and\(D=C^{\top }E^{ \dagger }C\):

$$ M^{\dagger }=\left ( \textstyle\begin{array}{c@{\quad }c} E^{\dagger }-E^{\dagger }CD^{\dagger }C^{\top }E^{\dagger } & E^{\dagger }CD^{\dagger } \\ (E^{\dagger }CD^{\dagger })^{\top } & DD^{\dagger }-D^{\dagger } \end{array}\displaystyle \right ). $$
(67)

Proposition 11

([12, Proposition 6.1.7])

Let\(A \in \mathbb{R}^{n \times m}\)and\(b \in \mathbb{R}^{n}\). Then the two statements are equivalent:

  1. (i)

    There exists a vector\(x \in \mathbb{R}^{m}\)satisfying\(Ax=b\).

  2. (ii)

    \(AA^{\dagger }b=b\).

If (i) or (ii) is satisfied, then for all\(y \in \mathbb{R}^{m}\), \(x=A^{\dagger }b+(I-A^{\dagger }A)y\)satisfies\(Ax=b\), and\(y=0\)minimizes\(x^{\top }x\).

Appendix B: Well-posedness of variational inequalities

The next results use the notions of recession functions and cones, which we briefly introduce now (see [20, 32] for illustrating examples). Let \(f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup \{+\infty \}\) be a proper convex and lower semicontinuous function, we denote by \(\mathrm{dom}(f) \stackrel{\Delta }{=} \{ x \in \mathbb{R}^{n} \mid f(x) < +\infty \}\) the domain of the function \(f(\cdot )\). The epigraph of \(f(\cdot )\) is the set \(\mathrm{epi}(f) \stackrel{ \Delta }{=} \{ (x,\alpha ) \in \mathbb{R}^{n} \times \mathbb{R}\mid \alpha \geq f(x) \}\). The Fenchel transform \(f^{\star }(\cdot )\) of \(f(\cdot )\) is the proper, convex, and lower semicontinuous function defined by

$$ \bigl( \forall z \in \mathbb{R}^{n} \bigr) \bigm| f^{\star }(z) = \sup_{x \in \mathrm{dom}(f)} \bigl\{ \langle x,z \rangle - f(x) \bigr\} . $$
(68)

The subdifferential \(\partial f(x)\) of \(f(\cdot )\) at \(x \in \mathbb{R}^{n}\) is defined by

$$ \partial f(x) = \bigl\{ \omega \in \mathbb{R}^{n} \bigm| f(v)-f(x) \geq \langle \omega ,v-x \rangle , \forall v \in \mathbb{R}^{n} \bigr\} . $$

We denote by \(\mathrm{Dom}(\partial f) \stackrel{\Delta }{=} \{ x \in \mathbb{R}^{n} \mid \partial f(x) \neq \emptyset \}\) the domain of the subdifferential operator \(\partial f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\). Recall that (see, e.g., Theorem 2, Chap. 10, Sect. 3 in [8]): \(\mathrm{Dom}(\partial f) \subset {\mathrm{dom}}(f)\).

Let \(x_{0}\) be any element in the domain \(\mathrm{dom}(f)\) of \(f(\cdot )\), the recession function \(f_{\infty }(\cdot )\) of \(f(\cdot )\) is defined by

$$ \bigl(\forall x \in \mathbb{R}^{n} \bigr): f_{\infty }(x) = \lim_{\lambda \rightarrow +\infty } \frac{1}{\lambda }f(x_{0} + \lambda x). $$

The function \(f_{\infty }: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup \{ +\infty \}\) is a proper convex and lower semicontinuous function which describes the asymptotic behavior of \(f(\cdot )\).

Let \(K \subset \mathbb{R}^{n}\) be a nonempty closed convex set. Let \(x_{0}\) be any element in \(K\). The recession cone of \(K\) is defined by

$$ K_{\infty }= \bigcap_{\lambda > 0} \frac{1}{\lambda }(K-x_{0})= \bigl\{ u \in \mathbb{R}^{n} \bigm| x+\lambda u \in K,\ \forall \lambda \geq 0,\ \forall x \in K \bigr\} . $$

The set \(K_{\infty }\) is a nonempty closed convex cone that is described in terms of the directions which recede from \(K\). The indicator function of a set \(K \subseteq \mathbb{R}^{n}\) is \(\psi _{K}(x)=0\) if \(x \in K\), \(\psi _{K}(x)=+\infty \) if \(x \notin K\). If \(K\) is closed, nonempty and convex, we have \(\partial \psi _{K}(x)=\mathcal{N}_{K}(x)\), the so-called normal cone to \(K\) at \(x\), defined as \(\mathcal{N}_{K}(x)=\{v \in \mathbb{R}^{n} \mid v^{\top }(s-x) \leq 0\mbox{ for all} {s \in K}\}\). When \(K\) is finitely represented, i.e., \(K=\{x \in \mathbb{R}^{n} \mid k_{i}(x) \geq 0, 1\leq i \leq m\}\), and if the functions \(k_{i}(\cdot )\) satisfy some constraint qualification (like, independency, or extensions like the MFCQ, see Appendix C), then \(\mathcal{N}_{K}(x)\) is generated by the outwards normals at the active constraints \(k_{i}(x)=0\), i.e., \(\mathcal{N} _{K}(x)=\{v \in \mathbb{R}^{n} \mid v=-\lambda _{i} \nabla k_{i}(x), k _{i}(x)=0, \lambda _{i} \geq 0\}\).

Let us here recall some important properties of the recession function and recession cone (see, e.g., [13, Proposition 1.4.8]:

Proposition 12

The following statements hold:

  1. (a)

    Let\(f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}\cup \{ +\infty \}\)and\(f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}\cup \{ +\infty \}\)be two proper, convex, and lower semicontinuous functions. Suppose that\(f_{1}+f_{2}\)is proper. Then for all\(x \in \mathbb{R}^{n}\): \((f_{1}+ f_{2})_{\infty }(x) = (f_{1})_{\infty }(x)+ (f_{2})_{\infty }(x)\).

  2. (b)

    Let\(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\cup \{ +\infty \}\)be a proper, convex, and lower semicontinuous function and let\(K\)be a nonempty closed convex set, such that\(f+\varPsi _{K}\)is proper (equivalently\(\mathrm{dom}(f) \cap K\)is nonempty). Then for all\(x \in \mathbb{R}^{n}\): \((f+\varPsi _{K})_{\infty }(x) = f_{\infty }(x) + (\varPsi _{K})_{\infty }(x)\).

  3. (c)

    Let\(K \subset \mathbb{R}^{n}\)be a nonempty, closed, and convex set. Then for all\(x \in \mathbb{R}^{n}\): \((\varPsi _{K})_{\infty }(x) = \varPsi _{K_{\infty }}(x)\). Moreover, for all\(x \in K\)and\(e \in K_{ \infty }\), \(x+e \in K\).

  4. (d)

    If\(K \subset \mathbb{R}^{n}\)is a nonempty, closed, and convex cone, then\(K_{\infty }= K\).

  5. (e)

    Let\(K=P(a,b)\stackrel{\Delta }{=}\{x \in \mathbb{R}^{n} \mid Ax \geq b\}\)for\(A \in \mathbb{R}^{m \times n}\)and\(b \in \mathbb{R}^{m}\). If\(K \neq \emptyset \)then\(K_{\infty }=P(A,0)=\{x \in \mathbb{R}^{n} \mid Ax \geq 0\}\).

  6. (f)

    \(K \subset \mathbb{R}^{n}\)is a nonempty, closed, convex, and bounded set if and only if\(K_{\infty }=\{0_{n}\}\).

Let us now concatenate [3, Theorem 3, Corollaries 3 and 4]. They concern variational inequalities of the form: Find \(u \in \mathbb{R}^{n}\) such that

$$ \langle \mathbf{M}u+\mathbf{q},v-u \rangle + \varphi (v)-\varphi (u) \geq 0, \ \forall v \in \mathbb{R}^{n} $$
(69)

where \(\mathbf{M} \in \mathbb{R}^{n \times n}\) is a real matrix, \(\mathbf{q} \in \mathbb{R}^{n}\) a vector and \(\varphi : \mathbb{R} ^{n} \rightarrow \mathbb{R}\cup \{+\infty \}\) a proper convex and lower semicontinuous function. The analogy with the generalized equation in (36) is clear taking \(\varphi (\cdot )= \varPsi _{\tilde{K}}( \cdot )\), thus restricting the variation of \(v\) to \(\tilde{K}\), \(\mathbf{q}=F(q,\dot{q},t)\) and \(\mathbf{M}=M(q)\).

The problem in (69) is denoted as \(VI(\mathbf{M},\mathbf{q}, \varphi )\) in the next proposition. We also set

$$ {\mathcal{K}}(\mathbf{M},\varphi )= \bigl\{ x \in \mathbb{R}^{n} \bigm| \mathbf{M}x \in \bigl(\mathrm{dom}(\varphi _{\infty }) \bigr)^{\star } \bigr\} . $$
(70)

Note that \((\mathrm{dom}(\varphi _{\infty }))^{\star }\) is the dual cone of the domain of the recession function \(\varphi _{\infty }\) while \((\mathrm{dom}(\varphi ))_{\infty }\) is the recession cone of \(\mathrm{dom}(\varphi )\).

Proposition 13

([3])

Let\(\varphi : \mathbb{R}^{n} \rightarrow \mathbb{R}\cup \{ +\infty \}\)be a proper, convex, and lower semicontinuous function with closed domain, and suppose that\(\mathbf{M} \in \mathbb{R}^{n \times n}\)is positive semidefinite (not necessarily symmetric).

(a):

If\((\mathrm{dom}(\varphi ))_{\infty }\cap {\mathrm{ker}}\{ \mathbf{M}+\mathbf{M}^{\top } \} \cap {\mathcal{K}}(\mathbf{M},\varphi ) = \{ 0 \}\)then for each\(\mathbf{q} \in \mathbb{R}^{n}\), problem\(VI(\mathbf{M},\mathbf{q},\varphi )\)has at least one solution.

(b):

Suppose that\((\mathrm{dom}(\varphi ))_{\infty }\cap {\mathrm{ker}} \{ \mathbf{M}+\mathbf{M}^{\top }\} \cap {\mathcal{K}}(\mathbf{M}, \varphi ) \neq \{ 0 \}\). If there exists\(x_{0} \in {\mathrm{dom}}( \varphi )\)such that

$$ \bigl\langle \mathbf{q}-\mathbf{M}^{\top }x_{0},v \bigr\rangle + \varphi _{ \infty }(v) > 0, \ \forall v \in \mathrm{dom}( \varphi )_{\infty } \cap {\mathrm{ker}} \bigl\{ \mathbf{M}+ \mathbf{M}^{\top } \bigr\} \cap {\mathcal{K}}( \mathbf{M},\varphi ), \ v \neq 0, $$
(71)

then problem\(VI(\mathbf{M},\mathbf{q},\varphi )\)has at least one solution.

(b′):

If\(\mathbf{M}=\mathbf{M}^{\top }\)then one can take\(x_{0}=0\)in (b).

(c):

If\(u_{1}\)and\(u_{2}\)denote two solutions of problem\(VI( \mathbf{M},\mathbf{q},\varphi )\)then\(u_{1} - u_{2} \in \mathrm{ker}\{ \mathbf{M}+\mathbf{M}^{\top } \}\).

(d):

If\(\mathbf{M}=\mathbf{M}^{\top }\)and\(u_{1}\)and\(u_{2}\)denote two solutions of problem\(VI(\mathbf{M},\mathbf{q},\varphi )\), then\(\langle \mathbf{q},u_{1}-u_{2} \rangle = \varphi (u_{2})-\varphi (u _{1})\).

(e):

If\(\mathbf{M}=\mathbf{M}^{\top }\)and\(\varphi (x+z) = \varphi (x)\)for all\(x \in {\mathrm{dom}}(\varphi )\)and\(z \in \mathrm{ker}\{ \mathbf{M}\}\)and\(\langle \mathbf{q},e \rangle \neq 0\)for all\(e \in \mathrm{ker}\{ \mathbf{M} \}\), \(e \neq 0\), then problem\(VI(\mathbf{M},\mathbf{q},\varphi )\)has at most one solution.

Notice that the function \(\varphi (\cdot )\) will never be strictly convex in our case (it is an indicator function) so that the strict convexity argument of [3, Theorem 5] which applies when \(\mathbf{M}\) is a \(P_{0}\)-matrix never holds.

Appendix C: Some convex analysis and complementarity theory tools

Theorem 1

([25, Theorem 3.8.6])

Let\(M \in \mathbb{R}^{n \times n}\)be copositive and let\(q \in \mathbb{R}^{n}\)be given. If the implication\(0 \leq v \perp Mv \geq 0 \Rightarrow v^{\top }q \geq 0\)is valid, then the\(\textit{LCP}(M,q)\)is solvable.

Let \(\mathcal{Q}_{M}\) denote the solution set of the homogeneous LCP. This theorem can be restated equivalently as: \(v \in {\mathcal{Q}} _{M} \Rightarrow q \in {\mathcal{Q}}_{M}^{\star }\).

The next corollary is proved in [18], and is a consequence of results in [23].

Corollary 4

Let\(D=P+N\), where\(D\), \(P\)and\(N\)are\(n \times n\)real matrices, and\(P \succ 0\), not necessarily symmetric. If

$$ \|N\|_{2} < \frac{1}{\| (\frac{P+P^{\top }}{2} )^{-1}\| _{2}} $$
(72)

then\(D \succ 0\).

If \(K \subset \mathbb{R}^{n}\) is a set, then \(K^{\star }=\{z \in \mathbb{R}^{n} \mid \langle z,x \rangle \geq 0\mbox{ for all }x \in K\}\) is its dual cone. Let \(K\) be a closed convex cone, then

$$ K^{\star } \ni x \perp y \in K \quad \Leftrightarrow \quad x \in - \mathcal{N}_{K}(y) \quad \Longleftrightarrow \quad y \in - \mathcal{N}_{K^{ \star }}(x). $$
(73)

Let \(M=M^{\top } \succ 0\), \(x\) and \(y\) two vectors, then

$$ M(x-y) \in -\mathcal{N}_{K}(x)\quad \Longleftrightarrow\quad x= \mathrm{proj} _{M}[K; y]\quad \Longleftrightarrow \quad x=\min _{z \in K} \frac{1}{2}(z-y)^{ \top }M(z-y). $$
(74)

We note that this is a particular case of (69), so that Proposition 13 can be considered as the characterization of a generalized projection operator \(VI(\mathbf{M}, \mathbf{q},\varphi )\).

In this paper we deal with nonconvex sets, for which it is needed to define suitable notions of normal and tangent cones. The so-called Mangasarian–Fromovitz constraint qualification (MFCQ) [26, pp. 17, 252] is also used.

Definition 1

(The MFCQ)

Let \(K\) be a finitely represented set, i.e., \(K=\{x \in \mathbb{R}^{n} \mid h_{i}(x) \geq 0, 1 \leq i \leq m \}\), and let \(\mathcal{J}(x)=\{ i \in \{1,m\} \mid h_{i}(x)=0\}\) be the set of active constraints indices. The continuously differentiable functions \(h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\), satisfy the MFCQ at \(x\) if there exists a vector \(v \in \mathbb{R}^{n}\) such that \(\nabla h_{i}(x)^{\top }v >0\) for all \(i \in {\mathcal{J}}(x)\).

Under the MFCQ, Clarke’s normal cone of prox-regular sets which are finitely represented by inequalities can be expressed in the so-called linearized form, using the normals to the constraint at the active points, as follows. Let \(K=\{x \in \mathbb{R}^{n} \mid h(x) \geq 0\}\). Suppose that the functions \(h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}\) are continuously differentiable and satisfy the MFCQ. Then Clarke’s normal cone to \(K\) at \(x\) is equal to \(\mathcal{N}_{K}=\{w \in \mathbb{R}^{n} \mid w=-\sum_{i \in {\mathcal{J}}(x)}\lambda _{i} \nabla h_{i}(x),\ \lambda _{i} \geq 0 \}=- (\mathcal{T}_{K}(x) ) ^{\star }\), with Clarke’s tangent cone equal to \(\mathcal{T}_{K}=\{z \in \mathbb{R}^{n} \mid z^{T}\nabla h_{i}(x) \geq 0,\mbox{ for all }i \in {\mathcal{J}}(x) \}\). In the case of the set \(S_{\mathrm{n},u}^{st}\) in Sect. 3.2, \(\mathcal{N}_{S _{\mathrm{n},u}^{st}}(q)\) is the cone generated by \(-\nabla h_{ \mathrm{n},u,i}^{st}(q)\) for active constraints \(h_{\mathrm{n},u,i} ^{st}(q)=0\). If \(K\) is closed convex this coincides with the definitions of convex analysis.

Appendix D: Dynamics of the RB + pendulum system

The kinetic energy is given by

$$ T(q,\dot{q})=\frac{1}{2}m\dot{x}^{2}+ \frac{1}{2}m\dot{y}^{2}+ \frac{1}{2}I_{G} \dot{\theta }^{2}+\frac{1}{2}I_{p}\dot{ \alpha }^{2}+ \frac{1}{2}\bar{m}\dot{x}_{p}^{2}+ \frac{1}{2}\bar{m}\dot{y}_{p}^{2}, $$
(75)

where \(I_{p}\) is the pendulum moment of inertia at its gravity center (supposed to be at the middle of the bar), \(\bar{m}\) is its mass. From the Lagrange equations (the potential energy is supposed to be null, hence the Lagrangian function is the kinetic energy), the term \(\frac{d}{dt} (\frac{\partial T}{\partial \dot{q}} )\) yields the inertia matrix

$$ M(q)=\left ( \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c} m+\bar{m} & 0 & \textstyle\begin{array}{l} -\frac{\bar{m}}{2}(a\sin (\alpha +\theta )\\\quad{}+l\cos ( \theta ))\end{array}\displaystyle & -\frac{\bar{m}a}{2}\sin (\theta +\alpha ) \\ 0 & m+\bar{m} & \textstyle\begin{array}{l}\frac{\bar{m}}{2}(a\cos (\theta +\alpha )\\\quad{} -l\sin ( \theta ))\end{array}\displaystyle & \frac{\bar{m}a}{2}\cos (\theta +\alpha ) \\ \textstyle\begin{array}{l}-\frac{\bar{m}}{2}(a\sin (\alpha +\theta )\\ \quad{}+l\cos (\theta )) \end{array}\displaystyle & \textstyle\begin{array}{l}\frac{\bar{m}}{2}(a\cos (\theta +\alpha )\\\quad{}-l\sin (\theta ))\end{array}\displaystyle & \textstyle\begin{array}{l}I_{G}+\frac{a ^{2}+l^{2}}{2}\\\quad{}+\frac{al}{2}\cos (\alpha )\end{array}\displaystyle & \frac{\bar{m}a}{4}(a+l \cos (\alpha )) \\ -\frac{\bar{m}a}{2}\sin (\theta +\alpha ) & \frac{\bar{m}a}{2} \cos (\theta +\alpha ) & \frac{\bar{m}a}{4}(a+l\cos (\alpha )) & \frac{ \bar{m}a^{2}}{4}+I_{p} \end{array}\displaystyle \right ) . $$
(76)

The Coriolis and centripetal forces \(C(q,\dot{q})\dot{q}\) can be computed from the remaining terms in \(\frac{d}{dt} (\frac{\partial T}{\partial \dot{q}} )\) and in \(-\frac{\partial T}{\partial q}\) such that \(C(q,\dot{q})+C^{\top }(q,\dot{q})=\frac{d}{dt} M(q)= (\frac{ \partial m_{ij}(q)}{\partial q}\dot{q} )_{ij}\) if the Christoffel’s symbols are used. One has:

$$ \begin{aligned} & \frac{\partial T}{\partial x}=0, \qquad \frac{\partial T}{\partial y}=0, \\ & \frac{\partial T}{\partial \theta }=\frac{\bar{m}}{2} \bigl\{ -a( \dot{\alpha }+\dot{\theta }) \bigl(\dot{x}\cos (\alpha +\theta )+ \dot{y}\sin (\theta +\alpha ) \bigr) +l\dot{\theta } \bigl(\dot{x} \sin (\theta )-\dot{y}\cos (\theta ) \bigr) \bigr\} , \\ & \frac{\partial T}{\partial \alpha }=\frac{\bar{m}}{2} \biggl\{ -a\bigl( \dot{\alpha }+\dot{\theta }\bigr) \bigl(\dot{x}\cos (\alpha +\theta )+ \dot{y}\sin (\theta +\alpha ) \bigr)+\frac{al}{2}\dot{\theta }( \dot{\alpha }+\dot{\theta })\cos (\alpha ) \biggr\} . \end{aligned} $$
(77)

We therefore deduce the vector of inertial plus external generalized forces:

$$ \begin{aligned} F^{x}(q,\dot{q},t)&= - \frac{\bar{m}}{2} \bigl\{ a(\dot{\alpha }+ \dot{\theta })\cos (\alpha +\theta )-l\dot{\theta }\sin (\theta ) \bigr\} \dot{\theta }-\frac{\bar{m}a}{2}(\dot{ \alpha }+ \dot{\theta })\dot{\alpha }\cos (\alpha +\theta )+F^{x}_{\mathit{ext}}, \\ F^{y}(q,\dot{q},t)&= \frac{\bar{m}}{2} \bigl\{ -a(\dot{\alpha }+ \dot{\theta })\sin (\alpha +\theta )-l\dot{\theta }\cos (\theta ) \bigr\} \dot{\theta }-\frac{\bar{m}a}{2}(\dot{\alpha }+ \dot{\theta })\dot{\alpha }\sin (\alpha +\theta )+F^{y}_{\mathit{ext}}, \\ F^{\theta }(q,\dot{q},t)&= -\frac{\bar{m}}{2} \bigl\{ a( \dot{\alpha }+\dot{\theta })\cos (\alpha +\theta )-l\dot{\theta } \sin (\theta ) \bigr\} \dot{x} \\ &\quad{}-\frac{\bar{m}}{2} \bigl\{ -a( \dot{\alpha }+\dot{\theta })\sin (\alpha +\theta )-l\dot{\theta } \cos (\theta ) \bigr\} \dot{y} -\frac{\bar{m}al}{4}\dot{\alpha }\dot{\theta }\sin (\alpha )- \frac{ \bar{m}al}{4}\dot{\alpha }^{2}\sin (\alpha ) \\ &\quad{} -\frac{\bar{m}}{2} \bigl\{ -a(\dot{\alpha }+\dot{\theta }) \bigl( \dot{x} \cos (\alpha +\theta )+\dot{y}\sin (\theta +\alpha ) \bigr) +l \dot{\theta } \bigl(\dot{x}\sin (\theta )-\dot{y}\cos (\theta ) \bigr) \bigr\} , \\ F^{\alpha }(q,\dot{q},t)&= -\frac{\bar{m}a}{2}(\dot{\alpha }+ \dot{ \theta })\dot{x}\cos (\alpha +\theta )-\frac{\bar{m}a}{2}( \dot{\alpha }+\dot{ \theta })\dot{y}\sin (\alpha +\theta )-\frac{ \bar{m}al}{4}\dot{\alpha }\dot{ \theta }\sin (\theta ). \end{aligned} $$
(78)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brogliato, B., Kovecses, J. & Acary, V. The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem. Multibody Syst Dyn 48, 151–192 (2020). https://doi.org/10.1007/s11044-019-09712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09712-1

Keywords

Navigation